ShrinkyCircuits: sketching, shrinking, and formgiving for electronic circuits

Joanne Lo, Eric Paulos
ACM Symposium on User Interface Software and Technology ACM Symposium on User Interface Software and Technology (2014)

Abstract

In this paper we describe the development of ShrinkyCircuits, a novel electronic prototyping technique that captures the flexibility of sketching and leverages properties of a common everyday plastic polymer to enable low-cost, miniature, planar, and curved, multi-layer circuit designs in minutes. ShrinkyCircuits take advantage of inexpensive prestressed polymer film that shrinks to its original size when exposed to heat. This enables improved electrical characteristics though sintering of the conductive electrical layer, partial self-assembly of the circuit and components, and mechanically robust custom shapes Including curves and non-planar form factors. We demonstrate the range and adaptability of ShrinkyCircuits designs from simple hand drawn circuits with through-hole components to complex multilayer, printed circuit boards (PCB), with curved and irregular shaped electronic layouts and surface mount components. Our approach enables users to create extremely customized circuit boards with dense circuit layouts while avoiding messy chemical etching, expensive board milling machines, or time consuming delays in using outside PCB production houses.