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Abstract
This paper investigates the usefulness of segmental phoneme-
dynamics for classification of speaking styles. We modeled
transition details based on the phoneme sequences emitted by
a speech recognizer, using data obtained from a recording of
39 depressed patients with 7 different speaking styles - nor-
mal, pressured, slurred, stuttered, flat, slow and fast speech.
We designed and compared two set of phoneme models: a lan-
guage model treating each phoneme as a word unit (one for each
style) and a context-dependent phoneme duration model based
on Gaussians for each speaking style considered. The experi-
ments showed that language modeling at the phoneme level per-
formed better than the duration model. We also found that better
performance can be obtained by user normalization. To see the
complementary effect of the phoneme-based models, the classi-
fiers were combined at a decision level with a Hidden Markov
Model (HMM) classifier built from spectral features. The im-
provement was 5.7% absolute (10.4% relative), reaching 60.3%
accuracy in 7-class and 71.0% in 4-class classification.
Index Terms: speaking styles, language model, phoneme, du-
ration

1. Introduction
This paper investigates automated classification techniques to
recognize different human speaking styles for detection of men-
tal illness. Previous work has shown that there are remarkably
strong cues to mental illness in short samples of the voice. Pitch
variation, pause, and information of glottal cycles are discrimi-
native features in differentiating subjects with and without men-
tal illness (90% accuracy with approximated 5-minute samples
of speech) [1, 2]. These cues are evident in severe forms of ill-
ness, but it would be most valuable to make earlier diagnoses
from a richer feature set. Furthermore, there is a semantic gap
between the low-level voice features identified by speech pro-
cessing technology and the diagnostic cues detected by trained
practitioners. That is, practitioners develop skills and exper-
tise in recognizing abnormal speaking styles listed in the mental
status exam (Table 1) [3]. We believe that by mimicking how
practitioners (or by capturing the knowledge and skills of prac-
titioners) recognize abnormal speaking styles, it is possible to
build a speech diagnostic system to detect early symptoms of
mental illness [4].

We can apply methods used in emotion recognition to clas-
sify different speaking styles [5, 6]. For example, supraseg-
mental features such as prosody at the utterance level describe
the overall textural characteristics presented by each speaking
style [5]. Nonetheless, these suprasegmental features may fall
short in capturing local regularities of phonology in each speak-

Table 1: Speech Descriptors in Metal Status Exam
Category Patterns

Rate of speech slow, rapid
Flow of speech hesitant, long pauses, stuttering
Intensity of speech loud, soft
Clarity clear, slurred
Liveliness pressured, monotonous, explosive
Quantity verbose, scant

ing style. For example, pressured speech, often characterized as
“fast, virtually nonstop, seemingly driven, and hard to interrupt”
[3, 4], expresses rapid phoneme transitions. On the other hand,
slurred speech presents slower phoneme transitions due to poor
pronunciation, which causes certain phonemes to be recognized
less frequently than in normal speech.

The goal of this study is to explicitly model the phoneme
transitions at a local, segmental level for categorizing speaking
styles. We implemented the classification of 7 different speak-
ing styles - normal, pressured, slurred, stuttered, flat, slow, and
fast speech - in the framework of language modeling and dura-
tion modeling at the phoneme level. We selected and labeled the
7 styles because they were the most prominent styles utilized by
practitioners in our previous exploration study [4].

We brought in techniques used in language identification,
especially those exploiting the phonology difference between
languages [7, 8]. Indeed, we can treat speaking styles as differ-
ent “languages”. Unlike the case of real world languages differ-
ing in the basic phoneme sets, different speaking styles share the
same set of phonemes, a property that causes difficulty for clas-
sification. However, phoneme frequencies may differ between
speaking styles. Zissman [8] has shown that language modeling
at the phoneme level is effective in identifying the differences.

Language modeling represents the probability of “transi-
tion” from a phoneme to the other, but it does not necessarily
capture how a phoneme “stays” as the same phoneme. There-
fore, we model the durations of phonemes to depict the aspect.
Duration modeling is simply the diagonals of transition matri-
ces in Hidden Markov Models (HMMs) obtained from acous-
tic modeling, for which we are interested in their alternations
in speaking styles. Orthogonally, we may map language mod-
eling to the off-diagonal values. Incidentally, the durations of
phonemes have also been found to be useful in the identifica-
tion of slow speech [9] - a manifestation of depression.

We used a CMU Sphinx-3 speech recognizer trained with
ICSI meeting corpus [10] to output phoneme and its dura-
tion sequences. Then, we built a n-gram language model on
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the phoneme sequences of each speaking style and used a
maximum-likelihood classifier rule, which predicts the speak-
ing style of an unknown utterance based on the language model
likelihood. For phoneme durations, we built a Gaussian model
for each phoneme and its context (left and right phonemes). Fol-
lowing the same fashion as language models, we calculated the
likelihood of an utterance by multiplying the likelihood of each
phoneme duration appearing in the sequence given its context.

In addition, we investigated a proper way of user normal-
ization. Since our study covers 39 subjects with diverse speak-
ing styles, taking into account individual differences (a human
practitioner must also do this) is important to accurately rec-
ognize individual speaking styles. For language modeling, we
normalized at the model level - a general cross-user model was
adapted to a user-specific model with back-off interpolation.
This method resembles the technique used for automatic speech
recognition (ASR) in a specific domain. To improve search ac-
curacy, ASR language models that are larger and more general
are often adapted to smaller, domain-specific models [11]. For
duration modeling, we normalized at the feature level - we nor-
malized the duration of a phoneme by subtracting the duration
average of a user. This method is similar to the one used for
spectral features, i.e. cepstral mean normalization [12]. For
comparison, we also designed a baseline classifier with spectral
features, using Mel-frequency cepstral coefficients (MFCCs)
and Hidden Markov Models (HMMs), an approach that has pro-
vided some promising results in speaking style recognition [13],
speaker identification [14], and emotion recognition [15].

The paper is presented as follows. Section 2 describes the
speech database we used. Section 3 explains the procedure
for training and testing language models, duration models, and
HMMs with MFCCs. Section 4 describes the experimental re-
sults and section 5 concludes the paper.

2. Speech Database
We recorded one-on-one therapy sessions spanning 10 months,
in which 39 depressed patients and their health practitioners
consented to participate in the recordings. The recording took
place in doctors’ offices, which were quiet and have microphone
arrays (Acoustic Magic Voice Tracker at the sampling rate of 44
kHz) placed 2 feet away and on the side of the patients and doc-
tors. This setup maintained recording quality while minimizing
interference to the sensitive nature of therapies. Because abnor-
mal speaking styles appeared occasionally in the natural conver-
sation, we segmented the recordings and labeled the utterances
that match the 7 speaking styles of interest - normal, pressured,
slurred, stuttering, flat, slow, and fast speech. We consulted
the practitioners so that the labeling conform to the perception
of the practitioners [4], where we adapted a master/apprentice
model [16] to transfer the domain knowledge. Altogether, we
compiled 1297 utterances that last a total of 3.9 hours, with ut-
terance averages of 10.7 seconds. We obtained 66.9 minutes of
normal speech, 38.1 minutes of pressured speech, 16.1 minutes
of slurred speech, 34.6 minutes of stuttering speech, 49.00 min-
utes of flat speech, 9.9 minutes of slow speech, and 16.7 minute
of fast speech. The data imbalance is due to the fact that some
speaking styles happen more frequently than others. Among the
7 speaking styles, some styles share similar characteristics. For
example, pressured and fast speech both contain rapidness of
speech, but pressured speech also includes more animated tex-
ture (e.g. higher intensity). Both flat and slow speech presents
slowness and paused speech, but flat speech has an additional
low animation feature (e.g. low vocal energy and pitch varia-

tion). Each utterance is associated with only one class label,
and in our experiments, we downsampled the speech data to 16
kHz.

3. Language and Duration Modeling of
Phoneme Transitions

We made use of a CMU Sphinx-3 speech recognizer trained
with the ICSI meeting corpus [10] to output phoneme and dura-
tion sequences. Using MFCCs with delta and acceleration co-
efficients, the speech recognizer generates phoneme sequences
with 4000 tied senones, each equipped with 32 Gaussian mix-
tures.

First, we built a general n-gram language model Ps for
speaking style s using the phoneme sequences labeled as speak-
ing style s. With the 7 models, the language model classifies an
unknown utterance with phone sequence W as speaking style ŝ
based on the speaking style with the highest likelihood, i.e.

ŝ = argmax
s
Ls(W ) (1)

Ls(W ) =
∑
t

logPs(wt|ht) (2)

where wt−1 and wt are consecutive phonemes observed in the
phone sequence W , with history ht = wt−1, · · · , wt−n+1. We
used the CMU statistical language model toolkit [17] for exper-
imentation, and we applied Witten Bell discounting technique
[18] for unseen events. For user normalization, we first built
a user-specific n-gram model P ′s,u using a separate held-out
dataset, which includes phoneme sequences of user u labeled
as style s. Because the model is small, it may fail to capture
the general speaking-style trends. Therefore, we back-off inter-
polated the model P ′s,u with the larger, general model Ps (3).
Finally, the intermediate model P̃s,u was linearly interpolated
with the style-specific model Ps, generating the final version of
the user-adapted model Ps,u (4). Using the same held-out data
that we used to train P ′s,u, we calculated the optimal interpola-
tion weights via the Expectation-Maximization algorithm [19].

P̃s,u(Wu) =

{
P ′s,u(wt|ht) ifP ′s,u(wt|ht) ≥ T
λPs(wt|ht) otherwise

(3)

Ps,u(Wu) = αP̃s,u(Wu) + βPs(Wu) (4)

where T is an empirical threshold, the back-off coefficient λ
was calculated so that P̃s,u(wt|ht) sums to one, and Wu is an
utterance of user u.

For modeling phoneme durations, we built Gaussian mod-
els Qs for each speaking style s. In particular, we constructed
a Gaussian for each phoneme w, using the observed durations
of the phoneme w and its context (left and right phonemes) that
appear consecutively in utterances labeled as style s. Follow-
ing the same fashion of n-gram modeling, we calculated the
likelihood of an utterance by multiplying the likelihood of each
phoneme duration appearing in the sequence D = {dt} given
its context, i.e.

Ms(D,W ) =
∑
t

logQs(dt|wt, ht, h
′
t) (5)

ŝ = argmax
s
Ms(W ) (6)

where ht = wt−1, · · · , wt−n+1 and h′t = wt+1, · · · , wt+n−1.
For user normalization, we adapted the duration feature before
the training and testing was performed, where the new duration
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Table 2: Confusion matrix of 2-gram language modeling at
phoneme level with user normalization. Rows represent the
test utterances, and columns represent the predicted speaking
styles. Norm stands for normal speech, Pres stands for pres-
sured speech, Slur stands for slurred speech, and Stut stands for
stuttering speech. For easier interpretation, the confusion ma-
trix is normalized in each row (i.e. a column does not sum to
one). We also list the F1 harmonic measure between precision
and recall for each class in the bottom row. The weighted aver-
age accuracy was 53.2% (0.73).

Norm Pres Slur Stut Flat Slow Fast
Norm 0.65 0.11 0.02 0.05 0.11 0.02 0.04
Pres 0.18 0.56 0.07 0.03 0.02 0.00 0.15
Slur 0.03 0.04 0.69 0.05 0.08 0.04 0.07
Stut 0.19 0.11 0.10 0.43 0.08 0.03 0.06
Flat 0.17 0.07 0.12 0.04 0.50 0.04 0.06
Slow 0.11 0.26 0.06 0.07 0.21 0.28 0.01
Fast 0.33 0.21 0.05 0.04 0.02 0.00 0.35
F1 0.61 0.56 0.49 0.52 0.55 0.27 0.35

ROC 0.71 0.73 0.76 0.73 0.73 0.68 0.75

d′t was computed by subtracting the averaged phoneme duration
of user s across all phonemes and styles, i.e.

d′t = dt −
∑

W∈u,t′ dt′

N
(7)

4. Experimental Results
4.1. Language Modeling Classifier of Phoneme Sequence

For evaluation, we performed a 10-fold leave-subject-out cross-
validation. That is, we trained models on the utterances of 35
subjects, tested on the utterances of the remaining 4 subjects,
and iterated. Because we are interested in building a model that
can be generalized to new users, the same user does not ap-
pear in both the training and test utterances. In addition, this
user-based break-up will better reflect the effect of user normal-
ization. Moreover, we did not want to create a “back-door” to
recognizing speaking styles if the distribution of speaking styles
is different between speakers. The language model could actu-
ally classify speakers who have different mixtures of speaking
styles. We computed weighted average accuracy for speaking
styles {s} to compare the performance of classifiers, i.e.

AvgAccuracy =

∑
sAccuracys ∗ TotalDurations∑

s TotalDurations
(8)

For language models, we first tested the general cross-user
models Ps. The weighted average accuracy was 27.7% with 2-
gram models. Then, we performed user normalization. We did
back-off interpolation to create user-adapted models Ps,u using
1/5 of utterances of test user u as a held-out set, and tested the
model with the remaining 4/5 of utterances of the user. The
threshold T for back-off was set to 0.1 empirically. The accu-
racy significantly improved to 53.2% and the details are given
in Table 2. On average, the size of the phoneme sequences
for building each general model Ps was 130019 phonemes,
whereas the user-adapted models Ps,u were based on a held-
out set of 2592 phonemes.

Table 2 shows that the system did not recognize slow and
fast speech as well as the others (F1 < 40%) . This may be
partially due to the fact of imbalanced data, where each of these

Table 3: F1 measures of 2-gram and 1-gram duration model-
ing with user normalization. Weighted average accuracies were
27.5% and 28.9% (0.58 and 0.69)

2-gram Norm Pres Slur Stut Flat Slow Fast
F1 0.39 0.25 0.17 0.12 0.29 0.04 0.16

ROC 0.53 0.56 0.65 0.51 0.65 0.57 0.58
1-gram Norm Pres Slur Stut Flat Slow Fast
F1 0.30 0.48 0.11 0.12 0.28 0.22 0.25

ROC 0.55 0.85 0.63 0.52 0.76 0.78 0.74

styles occupies less than 10% of the entire dataset. In addi-
tion, because some speaking styles share similar characteris-
tics, these speaking styles are likely to be miss-classified. For
example, some fast speech was classified as pressured speech,
slow speech was confused as flat speech, etc. There is also a
tendency that speaking styles with varied speech rate (e.g. fast
and pressured speech) were confused with normal speech. This
brings us to a hypothesis that language modeling does not model
speaking styles with varied speech rate very well. Lastly, one
thing surprised us was that slow speech was confused with pres-
sured speech. Again, this may due to the imbalance of data.

4.2. Gaussian Classifier of Phoneme Duration Sequence

To evaluate duration models, we also applied a 10-fold leave-
subject-out cross validation. Table 3 lists the F1 measures
of a 2-gram duration modeling with user normalization. The
weighted average accuracy was 27.5%, where user normal-
ization only gave about 4% improvement. We have also ex-
perimented with division-based normalization, instead of the
subtraction-based normalization in equation (7), but normaliza-
tion by subtraction achieved better improvement. Note that the
normalization applied here is a feature-based normalization and
the system did not use any held-out data, which is likely to be a
major factor for poor improvement.

The result of 1-gram duration modeling is also given in Ta-
ble 3, in which the F1 measures for speech rate-varied classes
were better than those in the 2-gram duration model. For exam-
ple, F1 of slow speech increased from 4% to 22%, fast speech
increased from 16% to 25%, and pressured speech went up
from 25% to 48%. Because a 1-gram model does not consider
phoneme context (left or right phonemes), the predicted likeli-
hood is purely based on the duration of phonemes, which should
favor classes with varied speech rate. In addition, since 1-gram
duration models are inclined to classify based on speech rate,
normal speech has worse accuracy because other classes such
as slurred or stuttered speech have the same speech rate.

4.3. Hidden Markov Model Classifier with Spectral Fea-
tures

For comparison, we designed a classifier based on spectral fea-
tures, using HMMs and 39-dimension MFCCs, which include
delta and acceleration coefficients. We made use of the Hid-
den Markov Toolkit (HTK) [20] for training and testing. We
trained a general HMM for each speaking style, and a maximum
likelihood-based classification decision was made. For user nor-
malization, we applied maximum likelihood linear regression
(MLLR) method [20] to adapt the mean values of each Gaus-
sian, using the 1/5 held-out utterances of a test user. A 1-state,
1 diagonal Gaussian mixture HMM achieves 54.5% weighted
average accuracy (Table 4). The MLLR-based normalization
was significant, providing a 30% boast in accuracy.
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Table 4: F1 measures of 1-state HMM classifier with MFCCs
and user normalization. Weighted average accuracy was 54.5%.
(0.77)

Norm Pres Slur Stut Flat Slow Fast
F1 0.66 0.66 0.40 0.45 0.52 0.34 0.44

ROC 0.76 0.67 0.83 0.62 0.82 0.87 0.83

Table 5: Classification accuracy for different classifiers
Classification Method Avg Accuracy

2-gram language model 53.2%
HMM with MFCCs (spectral) 54.5%

Combination of the 2 classifiers for 7 classes 61.7%
Combination of the 2 classifiers for 4 classes 72.1%

The result shows that, although the HMM classifier us-
ing MFCCs (54.5%) performs slightly better than the language
model at the phoneme level (53.2%), it is an encouraging re-
sult that the local phonological dynamics provide useful infor-
mation for classifying speaking styles. We also combined the
classifiers at the decision level, and the result is given in Ta-
ble 5. The phonology information improved the weighted av-
erage accuracy to 60.3% (a 5.7% absolute and 10.4% relative
improvement over the HMM classifier). Finally, we tested the
classifier on fewer classes. We did this by ignoring the classes
which might suffered from data imbalance, and performed a 4-
class classification between normal, pressured, stuttered and flat
speech. The accuracy reached 71.0%.

5. Conclusions
We investigated speaking style recognition using language
models and Gaussian duration models with phoneme se-
quences. The results showed that local regularities of phonol-
ogy provide useful information to improve speaking style
recognition. Combined with a HMM classifier using short-term
spectral features, phoneme transition information was able to
achieve the recognition accuracy of 60.3% for 7-class and 71.0
% for 4-class classification. Nonetheless, the combined deci-
sion showed only modest improvement, which may be due to
the fact that these two classifiers were based on similar fea-
tures, although they are at different levels. The spectral fea-
tures describe the sound textures that people perceive. Assisted
by HMMs to model the change of the features, to some ex-
tent the HMM classifier is able to depict the phonology tran-
sition. On the other hand, phoneme-based language modeling
abstracts the change of spectral features by looking at the high-
level phoneme sequences, which were emitted using acoustic
models. Nonetheless, we argue that language modeling better
mimics people’s higher level perception (i.e. whether certain
phoneme is pronounced correctly in slurred speech).

These lead to topics that we should further explore. First,
we could combine some orthogonal prosodic features such as
pitch and glottal timings with the the current classifiers in order
to improve the performance [5]. Second, we will leverage the
existing features and classifiers to build a mental health moni-
tor, a model that predicts the health level given the human voice.
During the collection of the speech database, we also collected
the health ratings of patients from the doctors, so we can per-
form a correlation or classification analysis according to the rat-
ings. In particular, we are interested in putting the speaking

styles as a latent variable for predicting mental health levels.
Finally, we plan to relax the requirement that we use a held-

out dataset for user normalization. If we consider applying this
model to real world users, it would be somehow cumbersome
to ask an expert to label some utterances of each new user. A
possible way to do this is to generate some rough estimate of
speaking styles, use it as an held-out dataset, and re-estimate
until the result converges.
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