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1 Introduction

The quickly evolving field of large-scale machine learning, or “data mining,” brings with it several challenges.
First, interesting large datasets, while perhaps not a problem to store, may be too large to hold in memory
in their entirety while processing. A related issue is that of a dataset that is never complete; observations,
or groups of observations, are constantly being added to “streaming” data. In both cases, the ability to fit
models piecemeal and later combine estimates would be advantageous.

An “online” algorithm does just that. “Online” learning is a paradigm in which models are fit to data
coming in a “stream,” eliminating the need to store all past observations or fit on the entire dataset en
masse. An online algorithm, in the form we will discuss below, takes each block of incoming data and uses
it to update the fit of the model. The data are subsequently discarded. However, before the fit is updated,
each new block can also be used to assess the performance of the model (a sort of cross-validation). Any
algorithms that can be fit with stochastic gradient descent are a perfect fit for this situation.

Another problem encountered in data mining is the selection of the best learning algorithm. A wide
variety of prediction algorithms are available, but for any new prediction problem, it’s not clear which one
will best capture the true relationship between the features and the outcome.

One potential solution is the use of “model stacking,” an ensemble method where many algorithms,
possibly from different types of models, are combined to form a final estimator. This is accomplished by
training the individual algorithms concurrently, then combining them via a weighted average, using using
either hold-out data or cross-validation to avoid overfitting. One example of such an ensemble method
is Super Learner, implemented in R, which combines competing algorithms by minimizing a suitable loss
function of a linear combination of their predictions under cross-validation. This combined approach has
been shown to perform asymptotically as well as or better than the “best” algorithm in the library of
algorithms (van der Laan et al., 2007).

In this project, we seek to find a combined solution to the two problems detailed above. Specifically,
we aim to develop an online/streaming approach to training stacking algorithms, and to do so efficiently by
training each algorithm on each data block concurrently.

2 Datasets

As the primary focus of this project was evaluating a method, we allowed the method to dictate the data
we used. Also, to test the algorithm under a variety of conditions, we chose to evaluate the algorithm on
multiple sets of data.

The first of these datasets was the most recent “dump” from Wikipedia. We took a similar approach
to that in assignment 3, using single words from each article’s text to predict (dichotomous) inclusion in
a parent category of “Mathematics.” This dataset met our qualifications of being large enough to warrant
exploration of an online approach to its analysis; our training set was composed of approximately 4, 500, 000
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observations, while the validation was run on 100, 000 articles not included in the training set. For the feature
space, a dictionary was formed from the 200, 000 most common words in the data, excluding stopwords.

The second dataset that was used to evaluate the algorithm was also a “dump,” this time of Stack
Overflow questions through July 31, 2012 (downloaded from http://www.kaggle.com). This data was ad-
vantageous, as it was not only large, but could theoretically fit into a streaming context. We again formed
a binary outcome for prediction, which was, for each question, whether or not its status was eventually
“closed.” The training set was approximately 3, 000, 000 questions, with a 10% validation set of approxi-
mately 300, 000 questions. The features used for prediction included words in the question’s title and body
(not including those longer than 15 characters), question tags, posting user reputation and the number of
undeleted questions by that user. Instead of pre-parsing the question text to form a dictionary, and because
we were not concerned with which words were most predictive of our outcome of interest, the text was instead
hashed for efficiency.

3 Analysis methods

In this section we describe a model stacking algorithm that can be trained in a sequential way on blocks
of data based on the SuperLearner algorithm (van der Laan et al., 2007). We focus on our implementation
choices and also describe possible modifications or generalizations to our approach.

3.1 Preliminaries and notation

Let X = (Y,W ) denote a random variable where Y ∈ R and W ∈ Rp. Let X1, X2, . . . denote a sequence of
independent and identically copies of X with distribution P0. In general, we are interested in estimating the
function

Q0(W ) = arg min
Q∈Q

E0L(X,Q)

where L is some loss function, E0 denotes expectation with respect to the distribution P0, and Q is some
set of possible functions Q, possibly unrestricted. Possible choices for L are the squared error loss and the
negative log likelihood loss. For the squared error loss, (Y − Q(W ))2, Q0 corresponds to the conditional
mean E0(Y | W ) (assuming Q is rich enough). If L is the negative log likelihood loss function, then Q0

is the conditional probability density function of the distribution P0, p0(Y | W ), assuming p0 ∈ Q. For
example, Y is Bernoulli then the negative log likelihood loss is −[Y log(Q(W )) + (1−Y ) log(1−Q(W )], and
Q0 corresponds to p0(Y = 1 | W ). In this case, p0(Y = 1 | W ) is equivalent to E0(Y | W ), so either loss
function can be used for binary Y .

Additionally, let an overbar denote a block of observations arranged in a matrix. Thus Ȳ = (Ym, Ym+1, . . . Ym+b−1)′

is a b× 1 matrix of outcomes Y , and let W̄ = (Wm,Wm+1, . . .Wm+b−1)′ is a b× p matrix of features, where
the ith, jth corresponds to the jth feature of observation m+ i− 1. Let Q̂ denote an estimate of Q0.

3.2 Main Algorithm

The algorithm we implement is intended for a single pass over a very large dataset, or for applications where
data is essentially infinite, coming in a stream which may not be stored permanently.

Details of the algorithm are described in algorithm 1. Functions initializeBase, updateBase, pre-
dictBase depend on the sort of base learning algorithms that are included are described in section 3.3. The
weighted average of base learning algorithms is based on a moving window of the last w observations. We
keep a w ×m matrix Z of predictions of the last w observations for each estimator Q̂i. We also keep the
last w outcomes Y in memory, called Ȳ ′. The prediction for each block of observation is from estimators
that have not yet been trained on that block to avoid overfitting. As described, we assume w ≥ b but the
algorithm can easily be modified for the case w < b, which is simpler because Z and Ȳ ′ do not need to be
saved between steps.
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The weighted average of base learners is defined as the minimizer of ||Ȳ ′ −Zα|| subject to αi > 0 for all
i, normalized to sum to one. Other loss functions can be used to combine the base algorithms.

After initialize is run, the algorithm is trained sequentially on blocks of data by calling update which
gets a new block of data and updates each base algorithm and the weighted SuperLearner combination.
At any time, predictions can be made on one or more new values of W with a call to predict. Although
not described in algorithm 1, in our implementation we estimate the risk for each base model and for the
SuperLearner combination before updating any models on the new block. In this way, we get a valid estimate
of the out-of-sample risk almost for free computationally, because we need predictions on the new block before
training the base algorithms anyway.

3.3 Base learning algorithms

A base learner can be any learning algorithm that can be trained in an incremental way, such as with
stochastic or mini-batch gradient descent (Bottou, 2010) or incremental L-BFGS (Langford, 2013; Schrau-
dolph et al., 2007). Such an algorithm must implement an updateBase method, taking a new block of Y s
and W s, and updating the estimate accordingly, and a predictBase method, which returns predictions for
a matrix of (new) W values. The initializeBase method should initialize the estimator in a reasonable
way before it sees the first block of data.

We implemented an intercept only model (“MeanLearner”), logistic regression without regularization and
with `1 or `2 (“LogisticRegression”, “LassoLogisticRegression”, and “RidgeLogisticRegression”, respectively)
and a linear SVM using mini-batch gradient descent with AdaGrad scaling (Duchi et al., 2010). To calculate
predicted probabilities from SVM, we wrapped the linear predictor in an additional logistic regression as
proposed by Niculescu-Mizil and Caruana (2005).

3.4 Possible modifications

The algorithm we describe in section 3.2 can be modified in various ways to improve performance. A simple
modification would be to allow each base algorithm to use different block sizes, where block size could be a
tuning parameter for each base algorithm.

Base algorithms could be added or removed from the library of algorithms adaptively. For example, if for
some number of blocks, some algorithms have weight 0 in the weighted combination of algorithms, we could
stop training them, thereby speeding up training time. Additionally, if we have a range of regularization
parameters λ for LassoLogisticRegression, say, and the largest λ consistently has the highest weight in the
combination of algorithms, we could add an additional LassoLogisticRegression with a larger λ to search for
a better regularization.

Algorithm 1 avoids overfitting by only using predictions from new blocks of data before training on
them. This works if we only make one pass over the data, but will fail if we see the same data more than
once. To allow for multiple passes over the data, instead of updating the weighted combination based on
all observations, we could hold out a small random subset of observations that are never used for updating
the base algorithms. We could take this a step further and implement full cross-validation, training multiple
copies of each algorithm with different validation sets held out.

3.5 Performance Evaluation

In addition to estimating the risk during training, we also evaluate the performance of each base algorithm
and the SuperLearner combination on an independent test set. The performance was assessed by MSE,
prediction accuracy, area under the receiver operating characteristic curve (AUC) and F1.
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Algorithm 1 Online Model Stacker

function initialize(blockSize, windowSize, listOfBaseLearners)
b← blockSize
m← length(listOfBaseLearners)
w ← windowSize
s← 0 . s is step number
for i = 1→ m do

Q̂0
i = initializeBase(listOfBaseLearners[i])

end for
Ȳ ′ ← (w × 1) matrix with all elements equal to 0
Z ← (w ×m) matrix with all elements equal to 0
α̂← (m× 1) matrix with all elements equal to 1/m

end function
function getNextBlock

Ȳ ← next b× 1 block of Y s
W̄ ← next b× p block of W s
return (Ȳ , W̄ )

end function
function update

s← s+ 1
(Ȳ , W̄ )← getNextBlock
Ȳ ′[1 : (w − b), 1]← Ȳ ′[(b+ 1) : w, 1]
Ȳ ′[(w − b+ 1) : w, 1]← Ȳ
if s > 1 then

Z[1 : (w − b), 1 : m]← Z[(b+ 1) : w, 1 : m]
for i = 1→ m do

Z[(w − b+ 1) : w, i]← predictBase(Q̂s−1i , W̄ )
end for
α̂← arg min

α:αj>0∀j∈{1,...,m}
||Ȳ ′ − Zα||

α̂← α̂/||α̂||1
end if
for i = 1→ m do

Q̂si ← updateBase(Q̂s−1i , W̄ )
end for

end function
function predict(W̄ ′)

b′ ← numRows(W̄ ′)
for i ∈ 1→ m do

Z ′[1 : b′, i]← predictBase(Q̂si , W̄
′)

end for
return Z ′α̂

end function
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4 Results

Initial testing of the online Super Learner algorithm was conducted using the Wikipedia dataset. First,
we investigated using Super Learner to combine the same base learning algorithm (logistic regression) with
different learning rate parameter values. The algorithm selected a linear combination of those values that
performed well, selecting learning rates around 0.1 (fig. 1). The algorithm tended to prefer learners with
faster rates more initially, but tended to preferring slower learning rates by the end of the training data. In
terms of the risk estimated on the training set, Super Learner performed better than any of the base learners
(fig. 2). The algorithm also performed well on the validation set (fig. 3).

Similarly, Super Learner performed well when given a collection of the same base learning algorithm
with different tuning parameters, here the regularization parameter λ for logistic regression with lasso (`1)
regularization (figs. 4 and 5). For the wikipedia dataset, the algorithm tended to prefer models with minimal
regularization.

Next, we assessed the performance of Super Learner on a combination of different model types. The
algorithm put most weight on lasso and logistic regression, learners that perform well individually (figs. 6
and 7). Again, Super Learner did better than any of the base learners on both the training and testing sets
(fig. 8).

Finally, using the Stack Overflow dataset, we assessed the performance of Super Learner supplied with
a very large number of base learners. Learners with a range of different learning rates and regularization
parameters were used. A total of 96 learners was used. After iterating over the full training set, the algorithm
put nonzero weight on only six algorithms, a mix of logistic regression both unregularized and with `1 and
`2 penalties (fig. 9). Assessing performance on the validation set, Super Learner found a linear combination
of learners that outperformed any individual learner (fig. 10).
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Figure 1: Weights for a collection of LogisticRegression learners with different learning rates (Wikipedia)
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Figure 2: MSE for a collection of LogisticRegression learners with different learning rates (Wikipedia)
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Figure 4: Weights for a collection of LassoLogisticRegression learners with different regularization parameters
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Figure 5: MSE for a collection of LassoLogisticRegression learners with different regularization parameters
(Wikipedia)
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Figure 6: Weights for a collection of different learners (Wikipedia)
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Figure 7: MSE for a collection of different learners (Wikipedia)
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Figure 8: Validation performance for a collection of different learners (Wikipedia)
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Figure 9: Final Weights for a collection of 96 different learners (Stack Overflow)
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Figure 10: Validation performance for a collection of 96 different learners (Stack Overflow)

5 Lessons learned and future work

In completing this project, we saw that our implementation of SuperLearner performed as well as any
individual algorithm in the library, as expected, while not overfitting even when the algorithm library was
very large. Inclusion of algorithms in the SuperLearner library that were implemented with stochastic
gradient descent also had the unforeseen advantage of providing an efficient way to “auto-tune” the learning
rates of these algorithms by running many versions concurrently.
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