
Politwitics: Summarization of political tweets

Erin Summers and Kristin Stephens

May 9, 2012

1 Introduction

Political blogs are a natural opinion space: people more often blog about political opinion, rather than
facts. Naturally, a multi-modal opinion space arises between different political opinions and parties. In
particular, Twitter provides a unique micro-blogging outlet.

The goal of this project is to summarize the political landscape of Twitter. We cluster the tweets
and select the top representatives of each cluster, which provides a more simple and succinct way to get
an overall view of the political twitterverse. We also evaluate the top words trending within a particular
time window.

2 Background

Twitter is a unique collection of short statement no longer than 140 characters. Because of the concise
document size, and the casual audience, the use of slang abounds. In addition to misspellings of words
and colloquial slang, it is typical for users to abbreviate words and Internet slang such as “LOL” for
“laugh out loud” or less common slang such as “IMO” for “in my opinion.” This creates a challenge
since it increases the vocabulary.

Multi document summarization (MDS) is a type of news aggregation and is used to reduce a large
corpus of documents into a concise summary, which expresses the key topics within the entire corpus [2],
[1], [3], [4], [5], [6], [7], [8]. The advantage of employing MDS is that a person can quickly ascertain the
key points within a long list of documents, rather than sift through the whole corpus.

The MDS algorithms work by first discovering the top hidden topics within the corpus. Next, the
distance of each sentence from the top topics is measured using various heuristics. A summary is
constructed by piecing together the most relevant whole sentences for each topic.

MDS is typically applied to a corpus of long documents, rather than short tweets. Additionally, the
typical input documents are assumed to be standard, coherent texts. Because tweets are so short and
noisy, we stray from the standard implementation of MDS and do not offer full paragraph summaries,
but rather tweet-sized summaries of the corpus.

3 Data Collection and Preprocessing

We used Twitter4J [11] to create a twitter filter for a list of keywords including: candidate names,
political words, and hot topics. See table 1 for the keywords we used. Unfortunately Twitter4J’s API
uses OR logic when a filter keyword contains multiple words. This requires us to reprocess all the tweets
we receive from the filter confirming the entire multi-word keyword is present in the tweet.

After removing irrelevant tweets, we process the resulting tweets using Ruby to create a dictionary
and bag of words vector for each tweet. We create two dictionaries using the top words based on word
frequency. The word frequency in the first dictionary is simply word count. The second dictionary’s
word frequency is a weighted count based on the age of the tweets the words came from. The younger
the tweet the more weight it’s words have in the count for the word frequency. We used equation 1 to
calculate how much the words in a given tweet counted towards the word’s frequency in the dictionary.

tweet timestamp− start time

total timeframe
(1)

For example, the youngest tweet’s word would add closest to 1, while the words in a tweet halfway
through the timeframe would add 1

2 .

1

Political Candidates Political Words Hot Topics
Bill Clinton caucus abortion
Dick Cheney democrat birth control
George Bush election death penalty
Herman Cain libertarian gay adoption
Hilary Clinton republican gay marriage
Hillary Clinton rockthevote gay rights
Joe Biden vice president gun control
John Boehner roe wade
John McCain
Mitt Romeny
Nancy Pelosi
Newt Gingrich
Obama Barack
Ron Paul
Santorum
Sara Palin

Table 1: List of keywords used in twitter filter

After creating the dictionary we choose the size of the dictionary and therefore the size of the resulting
sparse matrix. Each tweet’s bag of word vector is created using the chosen dictionary and the sparse
matrix output file is in binary for fastest processing when we read it into Matlab.

Our data spans from March 29th to the present day, since Twitter4J is continuously running. A
histogram of the word count vs. word frequency in Figure 1 shows that the word count follows a Zipf
logarithmic distribution. Total number of tweets (after preprocessing for relevancy) are shown in Figure
2. There is a spike in the number of tweets around 4/10. After collecting a few weeks worth of tweets, we
noticed that the Twitter4J API was using OR logic on keywords and removed some of the bigrams from
our keyword list such as “tea party”. Thus, we were able to collect more tweets since we were previously
hitting the %1 filter stream maximum. All together, we have collected 6.2 million relevant tweets.

4 Analysis

Using term-frequency inverse-document-frequency (TF-IDF), we observe the top words within a collec-
tion of tweets. We employ the clustering algorithms, k-means, fuzzy c-means, and non-negative matrix
factorization (NMF).

The bag-of-words representation of the data is X ∈ R|T |×|V |+ , where |T | is the number of tweets and
|V | is the size of the dictionary. In each clustering method, the number of clusters, C is chosen a-priori.

4.1 TF-IDF

Term-frequency, inverse-document frequency provides a way to adjust the weight of the words in a
collection of documents based on the relevancy of the word. The TF-IDF score gives less weight to
words that occur in other document and gives more weight to words which are repeated often within
a document. The term frequency tf is simply the number of times the word occurs in a particular
document. The inverse document frequency idf and tf − idf are given below:

idf(w, T) = log

(
size of corpus

of tweets where word w appears

)
, (2)

tfidf(w, T) = tf(w, T)idf(w, T). (3)

Using TF-IDF, we can access top words in the documents and whether or not any of these words are
n-grams. TF-IDF replaces the word counts in a tweet with scalings based on how relevant that word is
to the tweet within the corpus.

2

Figure 1: Word Count Histogram follows a Zipf Distribution

03/2804/01 04/06 04/11 04/16 04/21 04/26 05/04

0

50

100

150

200

250

300

350

Day

T
w

e
e
ts

 P
e
r

D
a
y
 (

in
 t

h
o

u
s
a
n

d
s
)

Figure 2: Tweets Per Day from 03/29/2012 to 05/04/2012

3

4.2 K-means

K-means is a simple, nondeterministic clustering process, which maximizes the similarity between the
cluster and the documents in the cluster.

C∑
k=1

∑
i∈ck

xi · ck
|xi||ck|

, (4)

where xi is the ith tweet and ck is the kth cluster. We use a cosine similarity measure, rather than a
distance measure.

Two major advantages of k-means are that it is simple to implement and computationally cheap,
since at worst it involves inner products of vectors. The standard implementation of k-means forms
hard clusters, meaning that each tweet belongs to only one cluster. This is a disadvantage since it does
not allow for partial membership of multiple clusters. Many tweets involve opinions comparing one
candidate to another. Hence, if the clusters formed represented singular candidates, such a tweet should
have membership in multiple clusters.

Data: X ∈ R|T |×|V |, bag of words representation of tweets
initialization: randomly select k tweets as the initial clusters;
while labelsi−l != labelsi do

labeli ← argmax(cossim(tweetj , clusterk));
clusterk ← avg(tweetj in clusterk);

end
Algorithm 1: k-means

4.3 Fuzzy C-means

Fuzzy c-means [10], also known as soft k-means, is similar to k-means, except it is a soft-clustering
process and allows tweets membership in multiple clusters. The objective is to minimize the cost

|T |∑
i=1

C∑
k=1

um
ik

(
1− xi · ck
|xi||ck|

)
, 1 < m <∞, (5)

where U is the partition matrix and m is the fuzzifier. The choice of m is critical. In the limit m = 1,
c-means behaves as a hard clustering. In our case, we chose m = 3.2 in order to get convergence.

Data: X ∈ R|T |×|V |, bag of words representation of tweets
initialization: randomly initialize U such that

∑
i Uij = 1 ∀j ;

while tolerance not reached do

ck = Um∑
w∈V ckw

;

Dkj = 1− cossim(tj , ck);

Uj = D
−2

m−1∑
i Dij

end
Algorithm 2: Fuzzy c-means

4.4 Non-negative Matrix Factorization (NMF)

Non-negative Matrix Factorization (NMF), [9] seeks to find a subspace of X such that the objective cost

‖X −WH‖22 (6)

is minimized, for W ∈ R|T |×C ≥ 0 element-wise and H ∈ RC×|V | ≥ 0 element-wise. Like fuzzy c-means,
NMF is a soft-clustering method.

Initialization for NMF is tricky. It is possible that the products in the denominator of the H and W
updates are zero for some entires, which leads to division by zero errors. On solution is to initialize H
and W to be full, random matrices, but this is too expensive computationally. Another solution is to
initialize H and W to be sparse, random matrices with a density much higher than X. We found that
using at least a density of 0.2 yields convergence.

4

obama 0.93 rt 0.33
president 0.62 republican 0.33
romney 0.41 gay 0.32
barack 0.40 clinton 0.32
mitt 0.40 via 0.32
campaign 0.36 #obama2012 0.30
paul 0.35 control 0.30
ron 0.34 abortion 0.30
people 0.33 @barackobama 0.30
first 0.33 election 0.29

Table 2: Top 20 words from TF-IDF words and scores

Data: X ∈ R|T |×|V |, bag of words representation of tweets
initialization: randomly initialize W and H to sparse random matrices of a certain density ;
while tolerance not reached do

wik = wik
(XHT)ik

(WHHT)ik
;

hkj = hkj
(WXT)kj

(WTWH)kj
;

end
Algorithm 3: NMF

5 Results

The goal of this project is to retweet relevant tweets. As the political tides are ever-changing, we focus on
analysis of a particular day, namely May 5th 2012, which contains 150,000 tweets. Preliminary analysis
revealed that bi-grams were not present in the top words from TF-IDF. Thus, we built a dictionary using
only unigrams and removed stopwords from the dictionary. Using a weighted dictionary only affected
the tweets over a small time window. For this study, we use an unweighted dictionary on the snapshot
of tweets. We limit the size of our dictionary to 1000.

After running TF-IDF, the twenty highest weighted words on 05/05/2012 are in Table 2 obama,
president, romney, barack, mitt, campaign, paul, ron, people, first, rt, republican, gay,
clinton, via, #obama2012, control, abortion, @barackobama, election.

Though many of the top words from TF-IDF were also keywords for our filter, TF-IDF was not
only able to discover the most relevant keywords, but included others as well, such as the #obama2012
tag. Compared to an earlier analysis, candidates that had dropped out like Rick Santorum are notably
missing from this list. Now that most of the Republican contenders have dropped out, the conversations
appear to be more centered around Obama, Romney and Ron Paul, who recently won a primary in
Maine, which generated a lot of tweet traffic.

Results from k-means, fuzzy c-means and NMF cluster are in Tables 3-5. Each method divided the
tweets into six clusters. Main topics for the k-means clusters are Barack Obama, Ron Paul, Mitt Romney,
gay marriage, with a few noisy clusters. The c-means iteration appears to have centered around only
Barack Obama and Ron Paul, with many Barack Obama clusters. NMF clustering performs poorly,
perhaps due to issues balancing computational intensity and initialization. Of the three methods, k-
means performs the best. The number of tweets in each cluster is shown in Figure 3.

C-means also did not perform as well as k-means. This can be attributed to the choice of the fuzzier
m. In our implementation, if m is too small, then there is no convergence. However, if m is too large,
then U becomes ill-posed and complex.

In both cases of soft clustering, none of the medoids had membership in clusters other than their
strongest cluster, which is understandable. It is possible that the algorithms would create clusters that are
soley a mix of two topics. However, the results indicated that the clusters were somewhat homogeneous,
particularly in NMF.

6 Lessons Learned

The biggest lesson we learned is Twitter data is extremely noisy. Even when our keywords are matched
perfectly many of the tweets are not of very high quality, ranging from spam to inappropriate. To add to

5

1 2 3 4 5 6

0

10

20

30

40

50

60

N
u

m
b

e
r

o
f

T
w

e
e
ts

 i
n

 C
lu

s
te

r
(t

h
o

u
s
a
n

d
s
)

Cluster

Figure 3: Number of tweets in each cluster, Kmeans

cluster 1
barack obama mask: .x{color:#83c22d;margin: 0px;font-size

:12px}.y{color:#a56eba}barack obama mask political masks

(... http://t.co/1s8m823y

cluster 2
@dykstradame ron paul is his very own brand of republican

nightmare: racist,hypocrite, homophobe and laissez-faire

ana ...

cluster 3

"dogs against romney"...dogs against romney super pack

member jeff clegg protested mitt romney in idaho falls,

id... http://t.co/udh5inwi

cluster 4
clearly, we can say & affirm that gay marriage is a most

vicious assault on the beliefs of christians, muslims and jews!

cluster 5

romney mulai kejar obama dalam jajak pendapat:

sebuah jajak pendapat nasional terbaru menunjukkan calon

presiden... http://t.co/xnjtzurd

cluster 6
charlie rose - vitaly churkin / historians on president obama

(april 8, 2010): president obama and president me...

http://t.co/stswgns7

Table 3: K means clusters

6

cluster 1
proof that romney is crazier than

i am: http://t.co/2lblibyd

cluster 2
inilah pacar pertama barack obama

http://t.co/cbhig65o

cluster 3

checking out "muslim brotherhood invades

tampa to re-elect president obama!" on

constitutional emergency: http://t.co/msrup7ep

cluster 4
#airjordan #barackobama hello mister

president http://t.co/msccg7ye

cluster 5 "i love you back."president obama

cluster 6
ron paul is benefiting the least from super

pacs among ... http://t.co/fobk0qqi

Table 4: Fuzzy C means clusters

cluster 1

herbert hoover accepts republican nomination,

nbc,c1932: 8x12in print from a high-quality scan

of the original.ti... http://t.co/hzabrfsg

cluster 2
tebow, lin, messi, adele, pippa, barack,

etc... #time http://t.co/mazfsegi

cluster 3 @wawinburn romney! romney! romney!

cluster 4 #ron paul videohttp://t.co/84tvw3ip

cluster 5
endorse @newtgingrich for president with

@hlm25933 on #votizen - https://t.co/oht8cd39

cluster 6

people, people, thats not a giant moon! its big

daddy barack’s ego.cresting over the horizon

on the evening of marx birthday. @barry_o44

Table 5: NMF clusters

7

the twitter noisy, Twitter4J uses OR logic when a filter keyword has multiple words. This means when
we filter for tweets with two words we receive all tweets with one OR the other word (e.g. “tea party”
returns all tweets with “tea” or “party”).

We learned that taking into account the age of the tweet has a larger impact if the dictionary is built
over a smaller window of time. Since the scope of the project is to look at a snapshots of tweets over a
day or two, it is not clear what the affect of using a weighted dictionary over a small range. Premilinary
results showed that the words from TF-IDF were different between two dictionaries that are weighted
and unweighted and built over 2 days worth of tweets. However, one did not appear to be more relevant
than the other.

K-means returned the most hetergeneous and relevant clusters, fuzzy c-means clusters were relevant,
but homogeneous, and NMF clusters appeared to be somewhat random. In fuzzy c-means, the choice of
the fuzzier m is critical and with NMF the initialization of W and H is tricky. Though these algorithms
may perform well on large data that is less noisy in the case of twitter the simpler k-means appears to
be the best choice.

7 Future Work

For future work, we would like to first, limit the scope of the keywords to a few candidates names. This
will reduce unexpected noise and spam significantly. We would also like to build the dictionary based
on a trusted, political source. By building a classifier from a current, political blog, we can use mutual
information to select the words in the dictionary for twitter.

The performance of the soft-clustering methods was shockingly bad. We would like to investigate
reasons why these clustering algorithms performed poorly and investigate other clustering methods. We
would also like to utilize the weighted dictionary and better understand the effects of the weighted
dictionary on the clustering results.

Our ultimate goal was to retweet the top tweets to our twitter handle @politwitics. With the
general election on the horizon, we hope to have this system fully running this summer.

References

[1] Inouye, D. and Kalita, J. “Comparing Twitter Summarization Algorithms for Multiple Posts”,IEEE
Conf on Privacy, Security, Risk, and Trust. pp. 298–306. 2011.

[2] L. Vanderwende, H. Suzuki, C. Brockett, and A. Nenkova, “Beyond SumBasic: Task-focused summa-
rization with sentence simplification and lexical expansion,” Information Processing & Management,
vol. 43, no. 6, pp. 16061618, 2007.

[3] D. Radev, S. Blair-Goldensohn, and Z. Zhang, “Experiments in single and multi-document summa-
rization using mead,” DUC-01, vol. 1001, p.48109, 2001.

[4] G. Erkan and D. Radev, “Lexrank: graph-based centrality as salience in text summarization,” Journal
of Artificial Intelligence Research, vol. 22, pp. 457480, 2004.

[5] R. Mihalcea and P. Tarau, “TextRank: Bringing order into texts,” inEMNLP. Barcelona: ACL, 2004,
pp. 404411.

[6] S. Brin and L. Page, “The anatomy of a large-scale hypertextual Web search engine* 1,” Computer
networks and ISDN systems, vol. 30, no. 1-7, pp. 107117, 1998.

[7] Blei, D.M. and Ng, A.Y. and Jordan, M.I. “Latent Dirichlet Allocation”. Journal of Machine Learning
Research. pp 993–1022. 2003

[8] Canny, J. “GaP: A Factor Model for Discrete Data”. Proceedings of the 27th annual international
ACM SIGIR conference on Research and development in information retrieval. 122-129. 2004.

[9] Lee, D.D. and Seung, H.S. “Learning the parts of objects by non-negative matrix factorization”.
Nature. 788–791. 1999.

[10] Bezdek, J.C. and Ehrlich, R., “FCM: The fuzzy c-means clustering algorithm”. Computers & Geo-
sciences. 191–203. 1984.

8

[11] Twitter4J, “Twitter4J - A Java library for the Twitter API”. May 2012. URL http://twitter4j.

org/en/index.html

9

