
CS294-1 Final Project

Algorithms Comparison

Deep Learning Neural Network — AdaBoost — Random Forest

Prepared By:
Shuang Bi (24094630)

Wenchang Zhang (24094623)

2013-05-15

1 INTRODUCTION

In this project, we are going to apply three different algorithms on different datasets.
They are deep learning neural network, adaptive boosting, and random forest. Our
goal is to find the rule of thumb of selecting suitable algorithms for different datasets
and to analyze different characteristics for the three algorithms. We make use of
various programming tools including packages in Java and R. We will measure the
performance of different models by performing 10-fold cross validation.(We did not
do cross validation on Reuters data)

2 DATA

The datasets we will be using in this project are SMS spam message collection, Farm
Advertisement and Reuters Text Categorization Collection Data taken from UCI
machine learning repository. Now we will discuss their formats and information we
extracted separately in the subsections below.

2.1 SMS Spam Collection

The SMS spam collection data set contains a set of labeled messages that are col-
lected from a UK forum. The data set consists of 13.4% spam messages and 86.6%
ham messages (useful messages). Examples of spam and ham message are shown in
Table 1 below.

Table 1: Example of Spam and Ham Message

Example
spam FreeMsg: Txt: CALL to No: 86888 & claim your reward...
ham What you doing? how are you?

After observing patterns of a sample of spam messages and doing some research
on key features of identifying spam messages, we decide to use the features that are
specified below in our model.

• Currency sign count; website address count; hash ID count; words with length
less than 3 counts; white space count

• Frequency of letters (upper case and lower case); frequency of numbers; fre-
quency of punctuations and other special characters;

1

http://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection
http://archive.ics.uci.edu/ml/datasets/Farm+Ads
http://archive.ics.uci.edu/ml/datasets/Farm+Ads
http://archive.ics.uci.edu/ml/datasets/Reuters-21578+Text+Categorization+Collection

• Ration of capital words (words contain capital letters)

• Average word length; average sentence length in characters; average sentence
length in words

• One-gram high frequency keywords count; two-gram high frequency keywords
count; tri-gram high frequency keywords count

Note that the one/two/tri-gram words are extracted from the text. For example,
the two-gram words are extracted by looking at all the possible two-word combina-
tions within a group of 10 words taken in the order of the sentence. After obtaining
all the possible one/two/tri-gram words, we get the top-occurrences spam words.
We named them as our one-gram, two-gram, tri-gram keywords to identify the spam
messages. We used the java package corpuslinguistics to do the ngram extraction.
Finally we extract 64 original features for each short message.

2.2 Farm Advertisement

This data set was collected from text ads found on 12 websites that are based on
various farm animals. The text ads are labeled with binary tags with 1 representing
accepted ads and -1 representing rejected ads. There are 53.3% accepted ads and
46.7% rejected ads. The data set is already stemmed and the stop words are removed.
The data set only contains words and they are not in any order, so the only features
we can get from this data are the words themselves. Finally we extract 66 original
features for each advertisement.

2.3 Reuters Reuters Text Categorization Collection

The documents in the Reuters collection appeared on the Reuters newswire in 1987.
The original data are saved in SGML files, and the snapshot of the data are as
follows Since there are many effective tools to parse XML file instead of SGML, we
wrote Java code to convert SGML to XML first, then applied Java javax.xml.parsers
package to parse XML. In the Reuters data, each article may fall into more than 1
topics, or no topics at all. Therefore we only considered top 6 most frequent topics,
which are

• acq, trade, grain, crude, earn, money-fx

Thus we have 6 0-1 values as responses for each article. Then we treat high fre-
quency words in title and body of text seperately as features. To do that, we built

2

Figure 1: Snapshot of Reuters Text Categorization Collection

a dictionary for words in titles and a dictionary for words in bodies of texts. Our
design matrix for this dataset contains 847 columns, 200 of which are for words in
titles and the rest are for words as well as frequency of appearance of numbers in
bodies.

3 ALGORITHMS and REALIZATION

In this project, we aim to apply three different algorithms to the data sets specified
above. We are going to explain how they work in detail in this section.

3.1 Deep Learning Neural Network

• K-classification, Yk, k = 1, 2, ..., K, are 0− 1 variables

• Feature Zm (hidden units) are created from

Zm = σ(α0m + αTmX),m = 1, 2, ...,M

where σ(v) = 1
1+e−v

3

Figure 2: A Neural Network Structure with 2 Hidden Layers

• Fit hidden units to model

fk(X) = gk(β0k + βTk Z)

where gk(T) = eTk∑K
l=1 e

Tl
, k = 1, 2, ..., K

Deep learning means bringing multiple layers instead of one to the structure. For all
the three datasets, we used package neuralnet in R to do the fitting, and the number
of layers in our study is up to 3. The two hidden layer neural network structure is
shown in Figure 2.

3.2 Adaptive Boosting

AdaBoost adaptively weigh the data by assigning higher weight to the data points
that are misclassified by the previous weak learner. In each iteration, we are going
to learn a new weak classifier on the weighted dataset. After all the iterations, the
weak classifiers are combined into a single strong classifier by assigning a different
weight for each weak classifier based on their performance.

Let X represent the text body we are given, and Y represent the binary re-
sponse. Therefore, (x1, y1), ..., (xm, ym) are the data provided where xi ∈ X, yi ∈
Y = {−1,+1}

First initialized the distribution of the weights of all the data points: D1(i) = 1
m

,
where i = 1, ..., m. Next, we want to find the weak classifier for each iteration t,

4

where t = 1, ..., T. Note that the classifier has to have an error rate that is less
than 0.5. The classifier will read in the features (X), and output the binary response
value. In another word,

ht = arg min
hj∈H

εj =
m∑
i=1

Dt(i)[y(i) 6= hj(xi)]

After we decide on which weak classifier we are going to use for a particular
iteration, we will calculate the corresponding weight assigned to this classifier, named
it αt. Therefore, αt = 1

2
ln 1−εt

εt
.

We then update the weight for all the data points based on the performance of
the classifier in the current iteration. The formula that is used for the update is,

Dt+1(i) =
Dt(i) exp(−αtyiht(xi))

Zt

where Zt is a normalization factor which will make Dt+1 indeed a distribution.
After we iterate t from 1 to T, we then output the weighted classifier and it will

be our final strong classifier, H(x).

H(x) = sign(
T∑
t=1

αtht(x))

We will follow this rationale and apply it to our three data sets to build our model
and make predictions. In practice we uesd the package ada in R to fit all the three
dataset.

3.3 Random Forest

Random forest performs classifications by constructing a bag of unpruned decision
trees. There are a lot of trees in this bag and each tree is grown based on a boot-
strap sample from the given data set. The tree is grown by selecting a portion of the
features at each node of the tree and choose the best split. The number of features
selected for each node should be much smaller than the total number of features.
Note that we do not perform any pruning during this process. The steps are as
following,

1. Choose the number of input variables to be used to determine the decision at
a node of the tree (m)

5

2. Generate bootstrap samples from the original data (i.e. sample with replace-
ment from the data)

3. Train a decision tree for each given sample. There are M input variables/features,
then randomly choose m << M variables at each node and choose the best split
on these m variables

4. For prediction, the given sample will be pushed down the grown tree con-
structed based on the training data. The response variable will be the label of
the terminal node it ends up with. We then iterate this procedure by all the
trees grown and the response with more votes will be our final prediction

There is a package called randomForest in R to apply this algorithm. For the SMS
collection and Farm advertisement, we used the randomForest() directly. However,
for the Reuters data, due to the large number of features, we applied parallel package
in R to define a parallel random forest function which fitted the data much faster
than the original randomForest().

4 RESULTS

In this section, we include RMSE results, accuracy rate for different algorithms and
also accuracy v.s. folds plots in 10-fold cross validation. They will be shown based
on different algorithms on the three data sets.

We use 10-fold cross validation to evaluate the performance of our model. We
divide the dataset into 10 equal folds. We then use 9 folds as the training set and
the remaining 1 fold as the testing set. Note that we acquired all of our results by
performing 10-fold cross validation.

4.1 Deep Learning Neural Network

In this algorithm, we applied different number of units within a hidden layer to the
SMS spam collection data set and different number of hidden layers to the Farm Ads
data set.

First of all, we will list the RMSE values for the 10 different validations. The
results are shown in Table 2 and 3

Table 2: RMSE for Deep Learning Neural Network (Spam Collection)

6

Fold as Testing 1 2 3 4 5
RMSE 0.1019 0.0898 0.0931 0.0913 0.0941

Fold as Testing 6 7 8 9 10
RMSE 0.0843 0.0914 0.0936 0.0918 0.0911

Table 3: RMSE for Deep Learning Neural Network (Farm Ads)

Fold as Testing 1 2 3 4 5
RMSE 0.3611 0.3584 0.3727 0.3942 0.3631

Fold as Testing 6 7 8 9 10
RMSE 0.3992 0.3804 0.3792 0.3580 0.3719

The average accuracy rate for different number of units for the first data set and
for different number of hidden layers for the second are summarized in the Table
4 and 5 below. The tables also include the converging time in terms of number of
iterations and running time for the two data sets.

Table 4: Accuracy Rate and Number of Iterations to Converge (Spam Collection)

of Units Accuracy Rate # of iterations
u10 98.46% 646.5
u15 98.58% 985
u20 98.44% 894.5

Table 5: Accuracy Rate and Running Time (Farm Ads)

of Hidden Layers Accuracy Rate Time (s)
1 92.78% 1044
2 93.06% 564
3 94.34% 253

The table above says that 15 units within a hidden layer works the best for the
first data set and 3 hidden layers achieves a higher accuracy rate for the second data
set.

Figure 3 illustrates the weighted features in our model for the spam message
collection data set. The biggest ball corresponds to the average sentence length in
words. Besides, number of words and number of high frequent unigram contribute
important information, too.

7

Figure 3: Weighted Feature Visualization for Spam Collection

4.2 Adaptive Boosting

We repeat the same thing we did for the first algorithm. Table 6 and 7 are the RMSE
calculations for the AdaBoost algorithm on the datasets.

Table 6: RMSE for AdaBoost (Spam Collection)

Fold as Testing 1 2 3 4 5
RMSE 0.1271 0.0947 0.1198 0.0947 0.1198

Fold as Testing 6 7 8 9 10
RMSE 0.1121 0.1641 0.0734 0.1198 0.1121

Table 7: RMSE for AdaBoost (Farm Ads)

Fold as Testing 1 2 3 4 5
RMSE 0.4313 0.3775 0.4313 0.3743 0.4053

Fold as Testing 6 7 8 9 10
RMSE 0.4199 0.3775 0.3870 0.4023 0.3962

The average accuracy rate for this algorithm will be summarized in the end, where
the results for three algorithms are combined together for comparison.

4.3 Random Forest

Similarly, we repeat the statistics for random forest algorithm. They are shown in
Table 8 and 9.

Table 8: RMSE for Random Forest (Spam Collection)

8

Fold as Testing 1 2 3 4 5
RMSE 0.1340 0.1271 0.1121 0.1271 0.1121

Fold as Testing 6 7 8 9 10
RMSE 0.1038 0.1121 0.1121 0.1038 0.1121

Table 9: RMSE for Random Forest (Farm Ads)

Fold as Testing 1 2 3 4 5
RMSE 0.4023 0.3743 0.3743 0.3870 0.3678

Fold as Testing 6 7 8 9 10
RMSE 0.3870 0.3775 0.3775 0.3901 0.3405

4.4 Overall Result

The average accuracy rate for three algorithms on three different data sets are shown
below (Table 10 and 11). The accuracy v.s. fold number plots comparing different
algorithms are also shown for the two data sets below (Figure 4, 5 and 6) . We also
record the running time for the three algorithms on two data sets (Table 12).

Table 10: Accuracy Rate for Three Algorithms on SMS and Farm Ads Data

Algorithm Spam Collection Farm Ads
Neural Network 98.58% 94.34%

AdaBoosting 98.98% 84.03%
Random Forest 98.56% 85.65%

Table 11: Accuracy Rate for Three Algorithms on Reuters in terms of 6 Topics

Algorithm acq trade grain crude earn money-fx
Neural Network 99.88% 99.91% 99.93% 99.92% 99.74% 99.88%

AdaBoosting 97.93% 99.62% 99.76% 99.60% 99.13% 99.56%
Random Forest 97,68% 98.55% 99.44% 98.88% 97.69% 98.86%

Table 12: Running Time for Three Algorithms on Three Data Sets

Algorithm Spam Collection (s) Farm Ads (s) Reuters (s)
Neural Network 159 476 1623

AdaBoosting 186 720 1482
Random Forest 148 342 972

9

2 4 6 8 10

0.
95

0.
97

0.
99

Accuracy v.s. Fold Number Plot
 for Three Different Algorithms

Fold Number

A
cc

ur
ac

y

Neural Network

AdaBoosting

Random Forest

Figure 4: Accuracy Rate v.s. Fold Number for Spam Collection

2 4 6 8 10

0.
70

0.
80

0.
90

1.
00

Accuracy v.s. Fold Number Plot
 for Three Different Algorithms

Fold Number

A
cc

ur
ac

y

Neural Network

AdaBoosting

Random Forest

Figure 5: Accuracy Rate v.s. Fold Number for Farm Ads

10

1 2 3 4 5 6

0.
95

0.
97

0.
99

Accuracy v.s. Topic Number Plot
 for Three Different Algorithms

Topic Number

A
cc

ur
ac

y

Neural Network

AdaBoosting

Random Forest

Figure 6: Accuracy Rate v.s. Topic Number for Reuters

5 CONCLUSION

From all the statistics provided above, we observe that for the spam collection data
set, all algorithms perform well. They all get an average accuracy rate around
98%. The reason is that the data set contains all the useful information. It retains
punctuations, special characters, capitalization of letters, etc. This characteristic
allows us to extract dynamic features from the data set and make more accurate
predictions.

However, for the second data set, deep learning neural network has the highest
accuracy rate. The reason for this phenomenon is that the given data set in this case
is already stemmed. All the information except the words are removed from this data
set. The order of the words is destroyed as well. Therefore, the only features we
can extract from the data are the words themselves. Applying AdaBoost or random
forest algorithm can only build models based on the given words. On the other hand,
deep learning neural network takes the inner links among features into consideration.
By applying multiple hidden layers on our model, we would be able to capture the
confounding relationships among the features and combine the features into strong
features each time we apply the additional layer.

For the third data set, deep learning neural network outperform the other two
in respect of accuracy. It is mainly because deep learning neural network seizes the
information contained in the combination of words both in titles and bodies of texts.
In respect of efficiency, these three algorithms takes less than 20 minutes for each

11

topic. The random forest is the fastest because of the parallel computing.
Though random forest is faster than the other two, we observe that random forest

has the biggest variance among the three algorithms.

12

	INTRODUCTION
	DATA
	SMS Spam Collection
	Farm Advertisement
	Reuters Reuters Text Categorization Collection

	ALGORITHMS and REALIZATION
	Deep Learning Neural Network
	Adaptive Boosting
	Random Forest

	RESULTS
	Deep Learning Neural Network
	Adaptive Boosting
	Random Forest
	Overall Result

	CONCLUSION

