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Introduction

We consider the book reviews sub-dataset from the Multi-Domain Sentiment
Dataset collected by Dredze et al [1]. This sub-dataset (to which we will refer in this
paper simply as “dataset”) includes about 1 million book reviews from Amazon.com
with their corresponding book ratings on a scale of 1-5 excluding the rating 3 for
being neutral.

In this report we describe the implementation considerations, the solution
techniques and the results of a linear regression at scale to the dataset described
earlier. We also compare these considerations and results among different design
options that we considered.

In the first section we describe the basic model that was used. Then we
discuss the performance boundaries of running such a large-scale job on a single
machine and the implementation details we used in order not to run into such
boundaries. At last, we give a summary of performance for our proposed solution.

The model

We apply linear regression on the numerically labeled book reviews. To be
more precise, we need to define a features vector for each data point that will be
carried into the linear regressions.

For that, we first collect all unigrams in all reviews texts (in the dataset) as
our dictionary. Each unigram is then given a distinct token id. Then, for each data

point pair of review/rating ()A(l.,Y,.) respectively, we consider the counts of these

tokenized unigrams in the specific review as features in our data vector X,

normalized by the length of the review. Therefore, the linear regression model can
be written as follows:

Y, =B, + X8 (1.1

Where [§ is the linear weights vector and BO is a biasing constant. If we
define X, =[ )A(i 1 } and B’ =[ ﬁ ﬁo } Equation (1.1) can be rewritten as

Y,=Xp (1.2)

Given N data points, we can define the matrix X' = [(X,. ) ]fi] and the ratings

(column) vector Y =[Y,]7, . We can rewrite equation (1.2) as
Y=Xp (1.3)
In order to solve for 8 we define an error metric as the residual sum of
squares (the L, error function) and aim to minimize that error

RSS(B) =l = XBIf, =(Y = XB)" (¥ - X) (1.4)
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Then by differentiating RSS(S) and setting the derivative to zero, the closed

form solution for f3 is (in case the matrix X" X is invertible)
B=(x"X) X"y (1.5)
Then, given a new unlabeled data point X, we can invoke 8 from equation

(1.5) into equation (1.2) to predict the rating of that review.

Performance boundaries
The dictionary of all words that appeared in any review text contains about

% million unigrams. Therefore, if we use 90% of the data set as training data, the

matrix X is (approximately) of size 0.9M x0.5M . This implies that the matrix
(XTX) is (approximately) of size 0.5M x0.5M (regardless of the size of the training

data). It is also noteworthy to mention that although the matrix X is sparse, the
matrix (XTX) is not as sparse. Trials to invert this matrix (under sparse

representation) failed to converge after 2 days of computation and were aborted.

In the following sub-sections we discuss two different possible solutions to
work around this machine performance boundary and we evaluate their
performance.

Feature selection & exact solution
Generalizing the observation from the last section, given F features, the size

of the matrix (XTX) is FxF. Thus, if we limit F such that inverting the matrix

(XTX) is tractable, we can compute exact solutions for 8 using equation (1.5). The

technique we used to select the F features was mutual information (MI).

We calculated 4 MI scores for each feature, one score per class. For each
feature, the final MI score was considered to be the maximum score among all 4
scores. This is analogous to picking the features according to their best ability to
discriminate between one specific class and the rest of the classes. Table 1
summarizes the verification data ROC area under the curve (AUC) (for rating>3
versus rating<3), root mean square error (RMSE) and the 1% lift scores for different
values of F that were chosen using MI. We had to limit ourselves to these values of
[ because higher F values failed to converge in a 1-day window.

Number of Features AUC RMSE 1% lift score
20,000 0.50151 | 0.50426 0.8316
40,000 0.50286 | 0.65586 0.8598
60,000 0.49672 | 0.83246 0.7892
80,000 0.49674 | 0.86746 0.7575

Table 1: Performance in the case of exact solution for selected sizes of features
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The results in Table 1 are not satisfying. We suspect the reason to be that we
did not select enough features. The reason for this belief is that by looking at the
feature vectors, we can see that since we “pruned” most of the features, some
reviews are left with zeros in all features (since all its words are not in the selected
features set). Therefore, a need to increase I arises but under the boundaries of
single-machine performance. From the limitations mentioned above, for higher
values of I, we will not be able to calculate exact solutions and will have to solve for
B differently.

Feature selection & (stochastic) gradient descent

It is easy to verify that RSS(B) as defined in (1.4) is a convex function.
Therefore (stochastic) gradient descent is one possible approach to solve the
optimization problem S =min,; RSS(B). Table 2 summarizes the performance of
the linear regression, in terms of ROC AUC, RMSE and 1% lift scores for different

features sizes. In this approach too we still use mutual information as our feature
selection technique.

Number of Features AUC RMSE 1% lift score
100,000 0.66351 | 0.00366 2.3994
120,000 0.72322 | 0.00382 0.7892
130,000 0.75574 | 0.00367 1.0880
140,000 0.75189 | 0.00375 6.2315
150,000 0.82743 | 0.00346 2.1313
160,000 0.89812 | 0.00300 10.7139
170,000 0.95982 | 0.00272 52.8770
250,000 0.94645 | 0.00289 46.3832

Table 2: Performance in the case of gradient descent solution for selected sizes of features

Training the regression for 250,000 features took significantly more time
than with 170,000. We believe that with 250,000 features we could get to the same
performance of 170,000 features, if not better. Although, because of the time and
resources constraints, we decided to not optimize for 250,000 features more than
that and move to try other techniques that will be described in later chapters in this
report.

Figure 1 shows the training RMSE vs iteration during the gradient descent
runs and the different ROCs for different sizes of features

Figure 1: Training RMSE vs Iteration and ROC plots for selected feature sizes.
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Lasso Regularization
It is of our interest to have a “constrained” weight vector 3. Extraordinary

large weights for certain terms may cause the following two effects (i) Two reviews
that differ in one high-weight term may have different ratings although they are
essentially the same and (ii) high weights may drive predicted ratings in a long
range (relative to 1-5) and therefore RMSE will take a hit. Thus, we chose to penalize
for the norm of B by adding a cost for the L, norm of 3. This approach is known as

the Lasso Regularization and yields the following error function
1 A
Error, ., ()= |I¥ =X Bl + {3 (3.1)

Where [§ is taken from (1.1) (i.e. without the BO ). The reason we don'’t

penalize for large BO is that the term BO is a biasing factor that is equally applied to

all data-points and is not affected by any terms in the review.
A question, though, about choosing “good” values of A arises. Intuitively, 4
incorporates the relative penalty weight of having a “large” 8 to the penalty of

squared error in the training data. Since we have previous results of training data

RMSE and norms of 8 (which is very close to the norm of [§), we can apply the

following heuristic of picking A (using the previous solutions from feature selection
& gradient descent)

1 > 1
xR Rsss)
[z

This value will “equally” penalize for “big” B’s as for root mean squared

errors. Half of this value will penalize root mean squared errors twice as much as it
penalizes “big” B’s.

The error function in (3.1) is a sum of two convex functions and thus is a
convex function itself. We used (stochastic) gradient descent to minimize this error
function for various features sizes and A values. The results are summarized in
terms of ROC AUC, RMSE, 1% lift scores and ||f||, values before and after

regularization in Table 3.

Table 3 shows that for “low” values of A, compared to the suggested value in
(3.2), the solution with the Lasso regularization approximately coincides with the
solution without penalizing for the norm of . On the other hand, for “large” values

of A, compared to the suggested value in (3.2), the solution tends to converge to f3’s

(3.2)

that are very small (and in extreme cases, B =0 because the penalty for any
deviation from that point is way larger than the decrease in the root mean squared
error). In the case of N=170,000 and A1=5-10" we see pretty good results with
relatively small norm of f3.
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Number of features A AUC RMSE | 1% lift 181,
w/ Lasso | w/o Lasso
100,000 8e-8 | 0.66407 | 0.00370 | 1.7761 336 562
3e-7 | 0.75942 | 0.00345 | 6.7431 251
130,000 6.3e-8 | 0.76108 | 0.00355 | 1.8443 591 802
160,000 4e-7 10.87402 | 0.00317 | 16.1927 251 1401
le-7 |0.95842 | 0.00273 | 51.8631 648
170,000 5e-7 10.93094 | 0.00302 | 40.0835 199 669
1.36e-6 | 0.87033 | 0.00333 | 27.1348 69

Table 3: Performance in the case of gradient descent solution with Lasso regularization for selected sizes

of features and values of lambda

Figure 2 plots the Training Error vs iteration and ROCs for the states

reported in Table 3

Figure 2: Training Error vs Iteration and ROC plots for selected feature sizes and values of lambda.

Strongest terms

We’ll be considering the solution with 170,000 features. Table 4 lists the
strongest 30 positives and Table 5 lists the strongest 30 negatives (according to

their weights).
reviewer unlike masterpiece | disappoint | invaluable hooked
explains hilarious refreshing viorst gem amazed
superb nonetheless | reviewers winner fantastic rocks
highest complaints | outstanding | magnificent terrific finest
riveting funniest chilling thrilled delivers copies
Table 4: Strongest 30 positives
disappointing | disappointment | poorly worst misleading | useless
ridiculous fails waste unfortunately claims lacks
unless awful tedious supposed unreadable | drivel
terrible disappointed | pointless superficial trash hoping
outdated pathetic garbage worse worthless stupid

Table 5: Strongest 30 negatives
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Summary

We described the design of a linear regression machine to be applied on book
reviews in order to predict review ratings from the dataset collected by Dredze et al
[1]. After optimizing for number of features sizes we got the results of ROC AUC
0.96, RMSE of 0.0027 on the verification data and 1% lift score of 52.8 with 170,000
features. After applying Lasso regularization to “limit” the magnitude of 3. We got
the results of ROC AUC 0.93, RMSE of 0.003 on the verification data and 1% lift score
of 40 with 170,000 features and A =5-10". Furthermore, the magnitude of 8

dropped from 669 without regularization to 199 with regularization.
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