# Ratings Prediction Using Linear Regression on Text Reviews

Behavioral Data Mining, Assignment 2, Spring 2012

Eric Battenberg

February 24, 2012

#### **1** Introduction

In this assignment, we use linear regression to predict book review rating scores (e.g. 1–5) using only the text from the reviews. The basic approach used was linear regression with a mean squared error cost function and either L2 or L1 regularization on the regression weights, as shown in eqs. 1,2.

$$\min_{\vec{w}} \frac{1}{N} \sum_{n=1}^{N} (y_n - \vec{w}^{\mathsf{T}} \vec{x}_n)^2 + \frac{\lambda}{2} \|\vec{w}\|_2^2 \tag{1}$$

$$\min_{\vec{w}} \frac{1}{N} \sum_{n=1}^{N} (y_n - \vec{w}^{\mathsf{T}} \vec{x}_n)^2 + \lambda \|\vec{w}\|_1$$
(2)

As input features, we used unigram and bigram counts extracted from the text of each review. We also experimented with binary (term existence, not counts) unigram and bigram features.

Optimization of (1) and (2) was done using stochastic gradient descent augmented by a Quasi-Newton (Hessian estimating) algorithm.

### 2 Optimization Algorithm

Because (1) could not be solved exactly due to problems with matrix singularity and memory contraints, we used stochastic gradient descent to minimize both objective functions in (1),(2). In order to speed up learning, we used the "Corrected SGD-QN" algorithm [1], which estimates a diagonal approximation of the Hessian every few iterations. This algorithm corrects some theoretical flaws in the algorithm presented in the original "Stochastic Gradient Descent Quasi-Newton" (SGD-QN) algorithm [2].

In addition to computing a Hessian estimate, this algorithm ignores the regularization term when performing most updates and only performs a large regularization-term-only gradient update when updating the Hessian estimate. This aspect of the algorithm saves a large amount of computation when input data is sparse because the weight vector  $\vec{w}$  is typically dense.

## 3 Setup

We partitioned 960,000 book reviews [3] into : 60% training, 30% testing, and 10% validation. Before training, it took about 15 minutes each (30 minutes total) to extract the unigram and bigram counts from the reviews and to build the sparse matrices where the features were stored.

To attempt to alleviate the significant class imbalance in the data (about 65% of the ratings were a 5), we introduce a non-uniform weighting to the error associated with each class. The weighting used is inversely proportional to the number of reviews in each class. The hope was that this weighting would increase the overall Area Under the Curve (AUC) of the ROC plot results, but this was not the case, as is shown in Section 4.

Training on unigram+bigram features for 100 sweeps through the data took approximately 2 minutes per parameter configuration.

#### 4 Results

We trained each regression model for 100 epochs (complete sweeps through the training data). For stochastic gradient descent, the batch size was 1000 data points, and each epoch was composed of 576 batches of data. The initial learning rate that scales each gradient-based update was 0.01. The learning rate for each component of  $\vec{w}$  is adjusted by the Hessian estimate and decay parameter from the SGD-QN algorithm. The Hessian estimate and learning rate are updated every 16 batches.

Training for 100 epochs using 12141 unigrams and 8772 bigrams as features takes approximately 2 minutes. We consider this a very reasonable amount of time in which to train such a large model. We attribute this favorable performance to the use of sparse matrix – compressed sparse row (CSR) format – operations which allow us to hold the entire training set in memory quite easily. In addition, CSR greatly speeds up the matrix-vector multiplications that are required during gradient calculations. The SGD-QN algorithm also allows the training to converge in much fewer iterations and further speeds up the training by allowing the regularization update to only occur every 16 batches. Our implementation was written in Python using the Numpy/Scipy modules for linear algebra operations.

As shown in Figure 1, AUC performance is worse across the board for models trained using the class weighted cost function mentioned in the previous section. Our best explanation for this is that giving additional weight to a class with such few training examples hurt the ability of the training to generalize to new data.



Figure 1: AUC for models trained with and without class weighting.

Figure 2 demonstrates the benefit using unigrams+bigrams as features. Unigrams alone perform nearly as well as unigrams+bigrams. Bigrams alone perform significantly worse, and we guess this is due to the general sparsity of bigram features. Considering a much larger set of bigrams could help, although limiting textual features to two-word phrases is quite a linguistic restriction.

Last, we show the AUC/1% Lift results for the unigram+bigram feature set trained with an unweighted cost function for various regularization parameter configurations. Figure 3 shows a slight edge for the L2 regularizer, especially at larger lambda values. In general, the best results were obtained using smaller values of lambda.

For the best performing model, the top positive and negative terms along with their associated weights are shown in Table 1. The terms are very illustrative of positive or negative reviews (though the fact that the model is sensitive to the presence of the term "five stars" could be considered cheating). Also, it's interesting to see that a term not easily associated with positive reviews like "negative reviews" is a strong indicator of a positive review. It seems that many reviewers tend to express their disgust with other negative evaluations of their favorite books.

Late breaking results: A few last minute runs using a binarized version of the data, where '1' denotes the existence of a unigram/bigram in the review, show a slight but promosing increase in performance over the results presented in Figure 3. We did not have to time to thorough test and plot this observation, but we though it was worth sharing. The best performing model when using full uni/bigram counts achieved an AUC of 0.9550 and a 1% Lift of 50.11. In

| Positive Term     | Weight   | Negative Term          | Weight    |
|-------------------|----------|------------------------|-----------|
| BIAS              | 4.14813  | disappointing          | -0.971764 |
| five stars        | 0.292859 | waste                  | -0.82052  |
| couldnt put       | 0.277786 | disappointment         | -0.75387  |
| awesome           | 0.246602 | dont buy               | -0.662329 |
| excellent         | 0.241283 | useless                | -0.609288 |
| negative reviews  | 0.228613 | garbage                | -0.603105 |
| didnt want        | 0.222544 | boring                 | -0.582366 |
| best book         | 0.21812  | worst book             | -0.5674   |
| outstanding       | 0.213361 | poorly                 | -0.55849  |
| invaluable        | 0.212584 | misleading             | -0.504742 |
| bad reviews       | 0.205332 | worst                  | -0.490587 |
| cant wait         | 0.20531  | $\operatorname{trash}$ | -0.487643 |
| masterpiece       | 0.202253 | awful                  | -0.464711 |
| great book        | 0.19924  | disappointed           | -0.459222 |
| required reading  | 0.196785 | nothing new            | -0.458999 |
| fantastic         | 0.195825 | unreadable             | -0.440433 |
| even better       | 0.193302 | worthless              | -0.431778 |
| 5 stars           | 0.187752 | outdated               | -0.429157 |
| superb            | 0.187638 | dont waste             | -0.422328 |
| important book    | 0.184593 | lame                   | -0.412592 |
| hilarious         | 0.183424 | better books           | -0.410663 |
| thank             | 0.177014 | one star               | -0.407822 |
| well worth        | 0.176622 | drivel                 | -0.389606 |
| loved             | 0.175422 | terrible               | -0.3815   |
| pleased           | 0.174067 | $_{ m skip}$           | -0.372932 |
| dont let          | 0.171718 | poorly written         | -0.367077 |
| refreshing        | 0.171304 | two stars              | -0.3636   |
| bravo             | 0.170913 | mediocre               | -0.361224 |
| never boring      | 0.169171 | dissapointed           | -0.360859 |
| gem               | 0.168176 | zero                   | -0.356757 |
| dont miss         | 0.166306 | lacks                  | -0.356736 |
| waste time        | 0.166169 | disgusting             | -0.354375 |
| fabulous          | 0.165705 | beware                 | -0.3539   |
| nothing short     | 0.165575 | tedious                | -0.351644 |
| funniest          | 0.16491  | horrible               | -0.349262 |
| amazing           | 0.164564 | shallow                | -0.342046 |
| favorites         | 0.163912 | stay away              | -0.340802 |
| rocks             | 0.163831 | zero stars             | -0.339163 |
| really good       | 0.161623 | pathetic               | -0.336543 |
| extremely helpful | 0.159407 | unrealistic            | -0.332609 |
| nothing else      | 0.159108 | sorry                  | -0.3277   |
| book 5            | 0.157704 | dull                   | -0.324211 |

Table 1: Top positive and negative terms for the model trained using L1 cost function and a lambda of 1E-5.

four quick runs using binary features, we found a model that achieved an AUC of 0.9558 and a 1% Lift of 52.39.

## References

- A. Bordes, L. Bottou, P. Gallinari, J. Chang, and S. Smith, "Erratum: SGDQN is less careful than expected," *The Journal of Machine Learning Research*, vol. 11, pp. 2229–2240, 2010.
- [2] A. Bordes, L. Bottou, and P. Gallinari, "SGD-QN: Careful quasi-Newton stochastic gradient descent," *The Journal of Machine Learning Research*, vol. 10, pp. 1737–1754, 2009.
- [3] M. Dredze. Multi-Domain Sentiment Dataset (version 2.0). [Online]. Available: http://www.cs.jhu.edu/~mdredze/datasets/sentiment/



Figure 2: Performance comparison for unigram/bigram combinations. Unweighted cost function.



Figure 3: Top: Area under ROC curve (AUC) for various regularizer settings. Bottom: 1% Lift of ROC curve.