
Ratings Prediction Using Linear Regression on

Text Reviews

Behavioral Data Mining, Assignment 2, Spring 2012

Eric Battenberg

February 24, 2012

1 Introduction

In this assignment, we use linear regression to predict book review rating scores
(e.g. 1–5) using only the text from the reviews. The basic approach used was
linear regression with a mean squared error cost function and either L2 or L1
regularization on the regression weights, as shown in eqs. 1,2.

min
~w

1

N

N∑
n=1

(yn − ~wᵀ~xn)2 +
λ

2
‖~w‖22 (1)

min
~w

1

N

N∑
n=1

(yn − ~wᵀ~xn)2 + λ‖~w‖1 (2)

As input features, we used unigram and bigram counts extracted from the
text of each review. We also experimented with binary (term existence, not
counts) unigram and bigram features.

Optimization of (1) and (2) was done using stochastic gradient descent aug-
mented by a Quasi-Newton (Hessian estimating) algorithm.

2 Optimization Algorithm

Because (1) could not be solved exactly due to problems with matrix singu-
larity and memory contraints, we used stochastic gradient descent to minimize
both objective functions in (1),(2). In order to speed up learning, we used the
“Corrected SGD-QN” algorithm [1], which estimates a diagonal approximation
of the Hessian every few iterations. This algorithm corrects some theoretical
flaws in the algorithm presented in the original “Stochastic Gradient Descent
Quasi-Newton” (SGD-QN) algorithm [2].

In addition to computing a Hessian estimate, this algorithm ignores the
regularization term when performing most updates and only performs a large

1



regularization-term-only gradient update when updating the Hessian estimate.
This aspect of the algorithm saves a large amount of computation when input
data is sparse because the weight vector ~w is typically dense.

3 Setup

We partitioned 960,000 book reviews [3] into : 60% training, 30% testing, and
10% validation. Before training, it took about 15 minutes each (30 minutes
total) to extract the unigram and bigram counts from the reviews and to build
the sparse matrices where the features were stored.

To attempt to alleviate the significant class imbalance in the data (about
65% of the ratings were a 5), we introduce a non-uniform weighting to the
error associated with each class. The weighting used is inversely proportional
to the number of reviews in each class. The hope was that this weighting would
increase the overall Area Under the Curve (AUC) of the ROC plot results, but
this was not the case, as is shown in Section 4.

Training on unigram+bigram features for 100 sweeps through the data took
approximately 2 minutes per parameter configuration.

4 Results

We trained each regression model for 100 epochs (complete sweeps through the
training data). For stochastic gradient descent, the batch size was 1000 data
points, and each epoch was composed of 576 batches of data. The initial learning
rate that scales each gradient-based update was 0.01. The learning rate for each
component of ~w is adjusted by the Hessian estimate and decay parameter from
the SGD-QN algorithm. The Hessian estimate and learning rate are updated
every 16 batches.

Training for 100 epochs using 12141 unigrams and 8772 bigrams as features
takes approximately 2 minutes. We consider this a very reasonable amount of
time in which to train such a large model. We attribute this favorable perfor-
mance to the use of sparse matrix – compressed sparse row (CSR) format –
operations which allow us to hold the entire training set in memory quite easily.
In addition, CSR greatly speeds up the matrix-vector multiplications that are
required during gradient calculations. The SGD-QN algorithm also allows the
training to converge in much fewer iterations and further speeds up the training
by allowing the regularization update to only occur every 16 batches. Our im-
plementation was written in Python using the Numpy/Scipy modules for linear
algebra operations.

As shown in Figure 1, AUC performance is worse across the board for models
trained using the class weighted cost function mentioned in the previous section.
Our best explanation for this is that giving additional weight to a class with
such few training examples hurt the ability of the training to generalize to new
data.

2



0.937	  
0.938	  
0.939	  
0.94	  
0.941	  
0.942	  
0.943	  
0.944	  
0.945	  
0.946	  
0.947	  
0.948	  

1.E-‐04	   1.E-‐04	   1.E-‐06	   1.E-‐06	  

L1	   L2	   L1	   L2	  

AU
C	  

Regulariza.on	  Norm/Lambda	  

AUC:	  Unweighted	  vs.	  Weighted	  Cost	  

Unweighted	  

Weighted	  

Figure 1: AUC for models trained with and without class weighting.

Figure 2 demonstrates the benefit using unigrams+bigrams as features. Un-
igrams alone perform nearly as well as unigrams+bigrams. Bigrams alone per-
form significantly worse, and we guess this is due to the general sparsity of
bigram features. Considering a much larger set of bigrams could help, although
limiting textual features to two-word phrases is quite a linguistic restriction.

Last, we show the AUC/1% Lift results for the unigram+bigram feature set
trained with an unweighted cost function for various regularization parameter
configurations. Figure 3 shows a slight edge for the L2 regularizer, especially at
larger lambda values. In general, the best results were obtained using smaller
values of lambda.

For the best performing model, the top positive and negative terms along
with their associated weights are shown in Table 1. The terms are very illustra-
tive of positive or negative reviews (though the fact that the model is sensitive
to the presence of the term “five stars” could be considered cheating). Also,
it’s interesting to see that a term not easily associated with positive reviews
like “negative reviews” is a strong indicator of a positive review. It seems that
many reviewers tend to express their disgust with other negative evaluations of
their favorite books.

Late breaking results: A few last minute runs using a binarized version of
the data, where ’1’ denotes the existence of a unigram/bigram in the review,
show a slight but promosing increase in performance over the results presented
in Figure 3. We did not have to time to thorougly test and plot this observation,
but we though it was worth sharing. The best performing model when using
full uni/bigram counts achieved an AUC of 0.9550 and a 1% Lift of 50.11. In

3



Positive Term Weight Negative Term Weight
BIAS 4.14813 disappointing -0.971764

five stars 0.292859 waste -0.82052
couldnt put 0.277786 disappointment -0.75387
awesome 0.246602 dont buy -0.662329
excellent 0.241283 useless -0.609288
negative reviews 0.228613 garbage -0.603105
didnt want 0.222544 boring -0.582366
best book 0.21812 worst book -0.5674
outstanding 0.213361 poorly -0.55849
invaluable 0.212584 misleading -0.504742
bad reviews 0.205332 worst -0.490587
cant wait 0.20531 trash -0.487643
masterpiece 0.202253 awful -0.464711
great book 0.19924 disappointed -0.459222
required reading 0.196785 nothing new -0.458999
fantastic 0.195825 unreadable -0.440433
even better 0.193302 worthless -0.431778
5 stars 0.187752 outdated -0.429157
superb 0.187638 dont waste -0.422328
important book 0.184593 lame -0.412592
hilarious 0.183424 better books -0.410663
thank 0.177014 one star -0.407822
well worth 0.176622 drivel -0.389606
loved 0.175422 terrible -0.3815
pleased 0.174067 skip -0.372932
dont let 0.171718 poorly written -0.367077
refreshing 0.171304 two stars -0.3636
bravo 0.170913 mediocre -0.361224
never boring 0.169171 dissapointed -0.360859
gem 0.168176 zero -0.356757
dont miss 0.166306 lacks -0.356736
waste time 0.166169 disgusting -0.354375
fabulous 0.165705 beware -0.3539
nothing short 0.165575 tedious -0.351644
funniest 0.16491 horrible -0.349262
amazing 0.164564 shallow -0.342046
favorites 0.163912 stay away -0.340802
rocks 0.163831 zero stars -0.339163
really good 0.161623 pathetic -0.336543
extremely helpful 0.159407 unrealistic -0.332609
nothing else 0.159108 sorry -0.3277
book 5 0.157704 dull -0.324211

Table 1: Top positive and negative terms for the model trained using L1 cost
function and a lambda of 1E-5.

4



four quick runs using binary features, we found a model that achieved an AUC
of 0.9558 and a 1% Lift of 52.39.

References

[1] A. Bordes, L. Bottou, P. Gallinari, J. Chang, and S. Smith, “Erratum:
SGDQN is less careful than expected,” The Journal of Machine Learning
Research, vol. 11, pp. 2229–2240, 2010.

[2] A. Bordes, L. Bottou, and P. Gallinari, “SGD-QN: Careful quasi-Newton
stochastic gradient descent,” The Journal of Machine Learning Research,
vol. 10, pp. 1737–1754, 2009.

[3] M. Dredze. Multi-Domain Sentiment Dataset (version 2.0). [Online].
Available: http://www.cs.jhu.edu/∼mdredze/datasets/sentiment/

5



0.82	  
0.84	  
0.86	  
0.88	  
0.9	  

0.92	  
0.94	  
0.96	  

1.E-‐05	   1.E-‐07	   1.E-‐05	   1.E-‐07	  

L1	   L1	   L2	   L2	  

AU
C	  

Regulariza.on	  Norm/Lambda	  

AUC:	  Feature	  Sets	  

Unigrams+Bigrams	  

Unigrams	  

Bigrams	  

0	  

10	  

20	  

30	  

40	  

50	  

60	  

1.E-‐05	   1.E-‐07	   1.E-‐05	   1.E-‐07	  

L1	   L1	   L2	   L2	  

1%
	  L
i&
	  

Regulariza/on	  Norm/Lambda	  

1%	  Li&:	  Feature	  Sets	  

Unigrams+Bigrams	  

Unigrams	  

Bigrams	  

Figure 2: Performance comparison for unigram/bigram combinations. Un-
weighted cost function.

6



0.905	  
0.910	  
0.915	  
0.920	  
0.925	  
0.930	  
0.935	  
0.940	  
0.945	  
0.950	  
0.955	  
0.960	  

1.
E-‐
03
	  

1.
E-‐
04
	  

1.
E-‐
05
	  

1.
E-‐
06
	  

1.
E-‐
07
	  

1.
E-‐
08
	  

1.
E-‐
03
	  

1.
E-‐
04
	  

1.
E-‐
05
	  

1.
E-‐
06
	  

1.
E-‐
07
	  

1.
E-‐
08
	  

L1	   L1	   L1	   L1	   L1	   L1	   L2	   L2	   L2	   L2	   L2	   L2	  

AU
C	  

Regulariza.on	  Norm/Lambda	  

AUC:	  Unigram+Bigram	  Results	  (100	  Epochs)	  

0.0	  

10.0	  

20.0	  

30.0	  

40.0	  

50.0	  

60.0	  

1.
E-‐
03
	  

1.
E-‐
04
	  

1.
E-‐
05
	  

1.
E-‐
06
	  

1.
E-‐
07
	  

1.
E-‐
08
	  

1.
E-‐
03
	  

1.
E-‐
04
	  

1.
E-‐
05
	  

1.
E-‐
06
	  

1.
E-‐
07
	  

1.
E-‐
08
	  

L1	   L1	   L1	   L1	   L1	   L1	   L2	   L2	   L2	   L2	   L2	   L2	  

1%
	  L
i&
	  

Regulariza/on	  Norm/Lambda	  

1%	  Li&:	  Unigram+Bigram	  Results	  (100	  Epochs)	  

Figure 3: Top: Area under ROC curve (AUC) for various regularizer settings.
Bottom: 1% Lift of ROC curve.

7


