ACTIVITY THEORY IN ACTION

Brian Tran, CS 260
Activity Theory (AT) Review

- Activities are key structure in AT
 - Composed of *subjects, tools, and objective*
 - Ex. Bob (subject) is using the weights and treadmills (tools) to become physically fit (objective)
- Activities can be broken down into objectives
 - *Actions* are steps taken to complete the objectives
 - Ex. Bob is lifting the weights.
ACTIVITY-CENTERED DESIGN (ACD)

- Methodology for ubiquitous computing (ubicomp) design
- Encourages designers to focus on higher-level activities and offers activity-centric view of HCI
 - Orienting designs toward human needs
- Allows everyday context to be systematically incorporated into designs
- Design process should address how activities shape requirements of tools and how creation of tools reshapes activity
CHALLENGES TO APPLYING ACD

- ACD is mainly a set of perspectives and concepts
- Three Main Challenges
 - Hard to represent everyday observations as activity models
 - Human activities span extended time-period
 - Actions can affect evolving activities
 - Certain interaction behaviors of an activity must take into account a collective status of a stream of individual events
 - Application impact can only be tested in real world
 - Needs great deployment and cost
ActivityDesigner

- Attempt by Yang Li and James A. Landay to create tool that allows designers to apply ACD
- Designers iterate on design based on human activities, thus orienting design towards users’ high-level needs
- Key Features
 - Model human activities based on field data
 - Design based on stream of events over period of time
 - Generates prototypes that can run on various devices for continuous in situ testing
ACTIVITY MODELS AS EVERYDAY OBSERVATIONS

- Everyday observations represented as scenes
 - Designer adds concrete scenarios about everyday life to design as scenes (action, media, situation, comments)
 - Designers describe roles involved in scene and their activity of interest

- Aspects of everyday life represented as themes
 - Scenes are sorted into themes
 - Ex. Staying physically active
ACTIVITY STREAM-BASED BEHAVIORS

- ActivityDesigner allows multiple prototypes to see their sum effect on activities
- Activity query language designed because multi-dimensional and uncertainty
 - Query specifications: Action, role, scene, frequency, period of time, etc.
TESTING PROTOTYPES

- Local Tools
 - Designer can take user role to debug
- In Situ (Real World)
 - Installing prototypes on target devices
 - Virtual machine provided for running ActivityDesigner prototype
 - Web application for low-end devices
 - Incorporating appropriate activity sensing components
 - Users self-report
 - Automatically detect users’ activities based on real sensors and inference
STUDIES WITH ACTIVITYDESIGNER

- Laboratory User Study
 - Participants (CS/HCI/UI/IS background) overall found easy to use and useful
- Health Monitor
 - Shows nutrition and workout status of user and friends
 - Researchers collected data about eating healthy and staying active to import field data into ActivityDesigner
- UbiGreen
 - Displays user transportation patterns
 - Give positive feedback when patterns are less harmful to motivate users to make changes to improve environment
 - Researchers observed people’s transportation activities and used ActivityDesigner to create mobile phone prototype of UbiGreen
- Social Garden
 - Creates display for students and faculty to improve social awareness
 - Scenes: seminars, student-advisor meetings, hallway chats
ACTIVITY-BASED COMPUTING (ABC)

- Addresses mobility and cooperation in human work activities
- Activities can be broken down into 3 dimensions
 - Tasks and materials
 - Activity is carrying out task which use/manipulate some material
 - Service and application is decoupled
 - Time and space
 - Activities are stateful
 - Each service needs to be stateful and able to provide own state
 - Users
 - Users can see state of activity
 - Users can work together or separately on same activity
THE ABC FRAMEWORK

- Described in Jakob E. Bardram’s paper
- Goal is to provide runtime and programming platform for development and deployment of ABC applications
- Features
 - Runtime infrastructure that handled complexities of managing distributed and collaborative activities
 - API helps programmer create ABC-aware applications that can be deployed in runtime infrastructure
ABC FRAMEWORK IMPLEMENTING ABC PRINCIPLES

- Mobility: activity suspend and resume
 - Enable activities to be suspended in one device, and resumed in another
 - State management and stateful applications
 - Applications retain state and can give state to manager so user can resume state from a different application

- Collaboration
 - Asynchronous
 - Users take turns suspending/resuming shared activity
 - Require app to handle state info for entire application
 - Synchronous
 - Real-time activity sharing
 - Require app to handle state info for each of its components
CAAD (CONTEXT-AWARE ACTIVITY DISPLAY)

- Designed to improve task management for information workers through information management
- Automates creation and maintenance of task representations that are then displayed to user
 - Minimizes user overhead
 - Generates contextual awareness
- Motivating scenarios
 - Information access scenario
 - Citing a paper that you do not remember the author, title, etc.
 - Work awareness scenario
 - Checking collaboration between multiple teams without interviewing members of each team
LOGGING COMPONENT

- Gathers evidence of information use on computer
 - File access and modification, email transmission, application use and state, and web browsing activity
- Tracks what, when, how long, tools used, and people communicated with
Pattern Mining Component

- Input to data mining algorithm
 - Logged events are grouped into contiguous segments of time
 - Time segments aggregated together as large nonnegative matrix with integer elements
- Offline vs. online context structure calculations
 - Offline calculations run daily and create context structures
 - Online updates calculate how likely user is working on each particular context structure
- Determining number of context structures
 - Greedy algorithm. Merge context structures with similar events and time intervals
AWARENESS COMPONENT

- Shows user’s activity by context structures grouping information items
- Dynamically configured according to online predictions on which context structures are relevant to user
- Leverages what is most relevant to user in display
- Represents implicit context of user’s work-flow and cause reflection
SUMMARY: ACTIVITY THEORY APPLICATION

- ActivityDesigner centers design focus on activities rather than tasks and gives the designer tools to track the evolution of an activity over time.
- The ABC framework put the focus on the activity rather than the platform so that users could interact with the activity independent of a given device.
- CAAD used context structures to group similar information items similar to how activities group actions.
DISCUSSION QUESTIONS

- Discuss institutions aside from healthcare that the ABC framework could be applied to.
- Do you believe that some prototypes could be designed better without applying activity theory? Justify your reasoning. If so, list some examples.