
Event Driven UIs and
Model-View-Controller

CS160: User Interfaces

John Canny

Includes slides based on those of James Landay & Jeffrey Heer

.

Reminder

Archos 5 hardware available in class this Weds – one per
group.

Pls bring a check for $200 to UC Regents as a deposit.

You need the Archos for individual programming assignment
4 – no BT in emulator. OK to work in pairs. But still submit

individually.

Anyone else need Wii remote?

Topics

Interactive application programming

– Component Model

– Event-Driven User Interfaces

– Model-View Controller pattern

Interactive Application
Programming

In the beginning…

http://www.cryptonomicon.com/beginning.html

The Xerox Alto (1973)

Event-Driven UIs

Old model (e.g., UNIX shell, DOS)

– Interaction controlled by system, user queried
for input when needed by system

Event-Driven Interfaces (e.g., GUIs)

– Interaction controlled by user

– System waits for user actions and then reacts

– Complex, dynamic screen content requires a
more complicated system.

Event-Driven UIs

i.e. A “console” program looks like this:

 do some work…

 prompt user for input

 wait for user input

 process it…

Event-Driven UIs

i.e. An “interactive” program does at least this:

Do until a quit command: {

 wait for user input

 process it…

 (optionally) update display

}

Event-Driven UIs

“Console”-style input processing:

Switch (input-cmd) {

 case insert: do-insert(…)

 case delete: do-delete(…)

 case backspace: …

Event-Driven UIs

Can’t use this approach for window systems. The result of
a user command depends on what is the active
window - usually the one under the mouse.

There are too many possible combinations of input x target
window, and the window structure is dynamic.

Instead, code and data associated with a an active screen
element are packaged together in a “widget” or
“component.”

Component/Widget Model

Encapsulation and organization of interactive components
(“widgets”)

– Typically using a class hierarchy with a top-level
“Component” type implementing basic bounds management,
and event processing

Drawn using underlying 2D graphics library

Input event processing and handling

– Typically mouse and keyboard events

Bounds management (damage/redraw)

– Only redraw areas in need of updating

What are Some Examples of
Components?

What are Some Examples of
Components?

-Windows

-Layout panels

-Drawing panes

-Buttons

-Sliders

-Scrollbars

-Images

-Dropdown boxes

-Toolbars

-Menus

-Dialogue Boxes

-Progress indicators

-Video

-Icons

-Links

-Checkboxes

-Radio buttons

-Etc.

Periodic Table of Motif Widgets

Java Swing Widgets

Windows Vista/.Net Widgets

Apple Cocoa Widgets

Android Widgets

User Interface Components

public void paint(Graphics g) {

 g.fillRect(…); // interior

 g.drawString(…); // label

 g.drawRect(…); // outline

}

Each component is an object with

• Bounding box

• Paint method for drawing itself

• Drawn in the component’s coordinate system

• Callbacks to process input events

• Mouse clicks, typed keys

2D Graphics Model

Every component is a clipped drawing canvas with a
coordinate system
– Origin typically at top-left, increasing down and to the right

– Units depend on the output medium (e.g., pixels for screen)

– Rendering methods

• Draw, fill shapes

• Draw text strings

• Draw images

(0,0)

(0,0)

Composing a User Interface
Label TextArea

Buttons

How might we instruct the computer to generate this layout?

Absolute Layout
Label

TextArea

Buttons

(x=0, y=0, w=350, h=20)

(x=0, y=20, w=350, h=150)

(x=200, y=175, w=45, h=30)

(x=250, y=175, w=85, h=30)

But this is inflexible and doesn’t scale or resize well.

Containment Hierarchy
Window

Panel

Label TextArea Panel

Button Button

In Android

Declarative layout, main.xml:

In Android

Root View

LinearLayout

(vertical)

FrameLayout (wt 1)

FrameLayout (wt 1)

FrameLayout (wt 1)

FrameLayout (wt 8)

EditText

TextView

TextView

RadioGroup (horizontal)

TextView

Button

Next level

RadioButtons

Leaves

c.f. Layout in Cocoa: Springs + Struts

In Android
You can always use code for your layout (procedural layout):

lay1 = (LinearLayout)this.findViewById(R.id.mainFrame);

tv1 = new TextView(this);

lay1.add(tv1); // Makes the textView a child of the LinearLayout View

fl1 = new FrameLayout(this);

fl1.LayoutParams(MATCH_PARENT, 0px, 1); // width, height, weight

lay1.add(fl1);

And create struct and spring space with variables. Then to update, override
the onLayout method.

Events

Events

User input is modeled as events that must be
handled by the system and applications.

- Mouse input (and touch, pen, etc.)

- Mouse entered, exited, moved, clicked, dragged

- Inferred events: double-clicks, gestures

- Keyboard (key down, key up)

- Sensor inputs

- Window movement, resizing

Anatomy of an Event

An event encapsulates the information needed
for handlers to react to the input

– Event Type (mouse moved, key down, etc)

– Event Source (the input component)

– Timestamp (when did event occur)

– Modifiers (Ctrl, Shift, Alt, etc)

– Event Content

• Mouse: x,y coordinates, button pressed, # clicks

• Keyboard: which key was pressed

Events

Level of abstraction may vary. Consider:

- Mouse down vs. double click vs. drag

- Pen move vs. gesture

Callbacks

mouse over

click

drag

onMouseOver(Event e){…}

onClick(Event e){…}

onMouseClick(Event e){…}

onMouseDown(Event e){…}

onMouseUp(Event e){…}

Slider

Event Dispatch Loop

Event Queue

• Queue of input events

Event Loop (runs in dedicated thread)

• Remove next event from queue

• Determine event type

• Find proper component(s)

• Invoke callbacks on components

• Repeat, or wait until event arrives

Component

• Invoked callback method

• Update application state

• Request repaint, if needed

Mouse moved (t0,x,y)

Event Dispatch
Event Queue

• Mouse moved (t0,x,y)

• Mouse pressed (t1,x,y,1)

• Mouse dragged (t2,x,y,1)

• Key typed (t3, ‘F1’)

• …

(queues and dispatches

incoming events in a

dedicated thread)

/* callback for TextArea */

public void mouseMoved(e) {

 // process mouse moved event

}

Window

Panel

Label TextArea Panel

Button Button

9/28/2010 39

Interactor Tree

Display Screen

Outer Win [black]

Result Win [tan]
Result String

Inner Win [green]

Keypad [Teal]

- button

+ button

0 button

= button

7 8 9

4 5 6

0 + -

1 2 3

=

 93.54

ENT

9/28/2010 40

“Front” window gets event, decides whether to handle it.
- may decide to pass it on (by boolean return value).

Display Screen

Outer Win [black]

Result Win [tan]
Result

Inner Win [green]

Keypad [Teal]

- button

+ button

0 button

= button

7 8 9

4 5 6

0 + -

1 2 3

=

 93.54

ENT

Overlays

Sometimes the complexity in an
existing widget makes it
difficult to add event-handlers
or draw methods to it

 e.g. MapView

Overlays

An overlay sits “above” the
other View and receives
events first.

Handles onTouch() and onTap()

It should always forward events
it doesn’t want to deal with
(return false in Android) so
the main widget still works.

Code Style

There are several ways to use events:

Public class myApp extends Activity

 implements View.onClickListener, View.someOtherListener {

Public void onClick(View v)

 // figure out who handles the event

Public void onSomeOtherEvent(View v)

 // figure out who handles the event

Code Style

Or:

Public class myApp extends Activity {

 Public class myClickListener implements View.onClickListener {

 // handle the event for one widget

 Public void onClick(View w) {

 …

 }

 Public void onCreate(…) {

 myWidget.setOnClickListener(new myClickListener());

Code Style

Tradeoffs:
– Activity-level:

• Big switch statement to funnel event to right widget

• Less modular

– Inner class:

• Per-widget code only in onClick() methods

• Much more modular

• More memory to create classes? Perhaps – but they are very
small objects.

Model-View-Controller
Architecture

Model-View-Controller

Architecture for interactive apps

– introduced by Smalltalk developers at PARC

Partitions application in a way that is

– maintainable

– extensible

– scalable

 Model

View

Controller

Model-View-Controller

Idea is that the controller mediates between
views (different representations of data) and
the data itself, which is in the model.

Model

View

Controller

Model-View-Controller

Is a general software design pattern

Very explicit in the Cocoa Framework

Model-View-Controller

Similar to the architecture of client-server systems:

• Amazon

• Spreadsheet views of DBs

• MMORPG’s (World of Warcraft etc.)

• Email

Model

View

Controller

View

Controller

View

Controller

Example Application

Blue circles: 4

Cardinal squares: 2

Model

Information the app is trying to manipulate

Representation of real world state

– shapes in a drawing program

– document contents

– game state: players plus world

– email DB

Model

View

Controller

Model

The model should be standalone. i.e. it shouldn’t
depend on the view or controller logic.

Ideally, its schema should be fixed since the logic of
several controllers may depend on it.

Model

View

Controller

View

Implements a visual display of (part of) the model data.

May have multiple views

– e.g., board view and schematic for CAD tool

– Outline and page view for Powerpoint

Model

View

Controller

View

The view system contains information about “how” the
viewer is viewing the data, e.g.

• Where they are looking in 3D game

• What scale and page you are on in an editor

But information about content resides in the model, so
that the view can be rebuilt from it.

Model

View

Controller

Views

Model

View

Controller

View only needs to know current
page number and scale and size
of main view and context view.

Multiple Views

Blue circles: 4

Cardinal squares: 2

View

Shouldn’t directly depend on model data, but certainly
depends on the abstract content of the model.

i.e. the schema in the model might change, but the
view need not since the controller is mediating.

Model

View

Controller

A Tweak

Since some view components are for input, the “input
device” may really be a screen widget in the view.

Model

View

Controller

Controller

Mediating function:

• Converts information from model format to what the
view needs.

• Interprets view state (e.g. the page you’re on) to make
appropriate updates and queries from the model.

Model

View

Controller

Controller

Control function:

• Makes things happen: processes events from input
devices (or view widgets), and propagates changes by
other apps from model to view.

Model

View

Controller

Non-MVC design

Avoid too much data stored in view.

Adding a circle

Blue circles: 3

Cardinal squares: 2

Adding a circle

Blue circles: 3

Cardinal squares: 2

Adding a circle

Blue circles: 3

Cardinal squares: 2

Click!

Adding a circle

Blue circles: 4

Cardinal squares: 2

Relationship of View &
Controller

 “pattern of behavior in response to user events
(controller issues) is independent of visual
geometry (view issues)” –Olsen, Chapter 5.2

Relationship of View &
Controller

 “pattern of behavior in response to user events
(controller issues) is independent of visual
geometry (view issues)”

Controller must contact view to interpret what user
events mean (e.g., selection)

Combining View & Controller

View and controller are tightly intertwined

– lots of communication between the two

Almost always occur in pairs

– i.e., for each view, need a separate controller

Some apps combine into a single class

Model
View

Controller

Apple’s view

To more fully modularize, Cocoa separates some
controllers into view-facing and model-facing
subparts. Cocoa’s document classes:

In Android

MVC architecture much less obvious, although it is
claimed. Component control logic “internally MVC”.

One concrete example is AdapterView, which includes

• ExpandableListView

• Gallery

• GridView

• ListView

• Spinner

An Adapter class mediates between a View class and some
data.

Why MVC?

Combining MVC into one class will not scale

– model may have more than one view

– Each view is different and needs updating when model
changes

Separation eases maintenance and extensibility

– easy to add a new view later

– model info can be extended, but old views still work

– can change a view later, e.g., draw shapes in 3-d
(recall, view handles selection)

– flexibility of changing input handling when using
separate controllers

Adding Views Later

Blue circles: 4

Cardinal squares: 2

MVC and connections
Cocoa and certain other systems (Nokia’s Qt) support a

dynamic connection model between widgets and code.

In Xcode, you edit these graphically with Interface Builder.

Your code

is in here

MVC and connections

This leads naturally to a clean view/controller boundary.

Similarly, Cocoa’s “core data” provides data encapsulation,
creating a clean controller/model boundary.

Your code

is in here
External DB

Changing the Display

How do we redraw when shape moves?

Widgets with an internal MVC structure make this
easy because they have a model for the data to
be drawn.

Moving Cardinal Square

Blue circles: 4

Cardinal squares: 2

Erase w/ Background Color
and Redraw

Blue circles: 4

Cardinal squares: 2

Changing the Display

Erase and redraw

– using background color to erase fails

– drawing shape in new position loses ordering

Move in model and then redraw view

– change position of shapes in model

– model keeps shapes in a desired order

– tell all views to redraw themselves in order

– slow for large / complex drawings

Damage / Redraw Method

View informs windowing system of areas that need to be
updated (i.e., damaged) with invalidate();

– does not redraw them at this time…

Windowing system

– batches updates

– clips them to visible portions of window

Next time waiting for input

– windowing system calls draw method

http://developer.android.com/guide/topics/ui/how-android-draws.html

http://developer.android.com/guide/topics/ui/how-android-draws.html
http://developer.android.com/guide/topics/ui/how-android-draws.html
http://developer.android.com/guide/topics/ui/how-android-draws.html
http://developer.android.com/guide/topics/ui/how-android-draws.html
http://developer.android.com/guide/topics/ui/how-android-draws.html

Damage old, Change position
in model, Damage new

Blue circles: 4

Cardinal squares: 2

Example - Event Flow

Creating a new shape

Event Flow (cont.)

Assume blue circle selected

Blue circles: 0

Cardinal squares: 0

Event Flow (cont.)

Press mouse over tentative position

Windowing system identifies proper window for event

Controller for drawing area gets mouse click event

Checks mode and sees “circle”

Calls model’s AddCircle method with new position

Blue circles: 0

Cardinal squares: 0

Event Flow (cont.)

AddCircle adds new circle to model’s list of objects

Model then notifies list of views of change

– drawing area view and text summary view

Views notifies windowing system of damage

– both views notify WS without making changes yet!

Blue circles: 0

Cardinal squares: 0

Event Flow (cont.)

Views return to model, which returns to controller

Controller returns to event handler

Event handler notices damage requests pending and responds

If one of the views was obscured, it would be ignored

Blue circles: 0

Cardinal squares: 0

Event Flow (cont.)

Event handler calls views’ draw() methods with damaged areas

Views redraw all objects in model that are in damaged area

Blue circles: 1

Cardinal squares: 0

Review

Component Model

Event Handling

Model-View-Controller

– Break up a component into

• Model of the data supporting the App

• View determining the look of the application

• Controller for mediating and event management

– Provides scalability and extensibility

– Damage-repair drawing

Reminder

Archos 5 hardware available in class this Weds – one
per group.

Pls bring a check for $200 to UC Regents as a deposit.

You need the Archos for individual programming
assignment 4 – no BT in emulator. OK to work in
pairs. But still submit individually.

