
Multithreading and
Interactive Programs

CS160: User Interfaces

John Canny

.

This time

Multithreading for interactivity – need and risks

Some design patterns for multithreaded programs

Debugging multithreaded programs

Why Multithreading?

Interactive programs need to respond fast to user input.

Direct manipulation assumes that objects onscreen move
with the user’s hand.

Why Multithreading?

But not all code returns from event-handling so fast:

• File access

• Network operations

• Database lookup

• Simulation

Why Multithreading?

We at least need to decouple the code processing screen
events from the code that handles them.

But we often need to do more to make sure the code runs
robustly, even in the presence of errors.

Why Multithreading?

Other processes that need to stay ―live‖

• Getting help

• Aborting (need to handle the abort operation)

• Doing something else while waiting for a long operation

Running these modules in a single thread gives users
many aggravations:

Such as?

Why Multithreading?

More examples:

Multicore processors: use all the CPUs

Dynamic widgets:

• Clocks

• Progress indicators

• Mail inbox…

PS your course projects don’t have to be multi-
threaded, they are interactive prototypes.

What is a Thread?
A thread is a partial virtual machine. Each thread has its own

stack (and local variables), but shares its heap space and with
other threads.

 for (i=0; i<n; i++) {

 tmp = A[i];

 A[i] = B[i];

 B[i] = tmp;

 }

* Threads may also have some private heap space, called
Thread-Local Storage (TLS).

VM1 VM2

What is a Process?

A process is a complete virtual machine with its own
stack and heap.

Since processes don’t share memory with each other, they
need other mechanisms (e.g. system message queues)
to communicate with each other.

Processes vs. Threads

i.e. processes are like dating but multithreaded
programs are like living together.

Why Threads?

Because they share memory, threads support very
efficient and versatile communication. In fact, such
communication is basically free, and any data structure
can be used.

Well, even if communication is free, code development
certainly isn’t. Multithreaded programming is probably
the biggest productivity killer of all time.

Threading Hell

Mutexes

Semaphores Locks

Monitors

Signal()
Wait()

Spawn()

Join()

P() V()

Condition Var

After a long and careful analysis the results are

clear: 11 out of 10 people can't handle threads.‖

— Todd Hoff

Why is it hard?

Threading primitives are lower-level than high-level
language constructs.

Not standardized across OSes.

Nondeterminism.

Combinatorics:

Combinatorics

Consider 10 steps of a simple non-branching program.

A = B;

C = 4*A;

Y = exp(C);

…

Z = 5*R;

There is exactly one way that these statements can
execute in a single-threaded program.

Combinatorics

But if two threads execute the same 10 statements, how
many possible orderings of operations are there?

A = B;

C = 4*A;

Y = exp(C);

…

Z = 5*R;

A: 184756 = - but really more since there will be
 >> 10 instructions in the executable

10

20

Thread Safety

Code is thread safe if it can be called from multiple threads
without interaction between them.

A simple C++ function or method works just fine:

int fact (int n) {

 int i, p;

 for (i=1,p=1; i<=n; i++)
 p*=i;

 return p;

 }

Separate ints i,p are created on the stack each time the function
is called. Each thread has its own copy.

Thread un-Safety

But what happens if we change the variables to static (shared or
global)?

int fact (int n) {

 static int i, p;

 for (i=1,p=1; i<=n; i++)
 p*=i;

 return p;

 }

Thread Safety and OOP

Object-Oriented Programming uses class instances, and these are
usually heap-allocated. Heap storage is shared, and so class
instances can be seen and manipulated by all threads.

You need to take extra care when writing OOP multi-threaded
code for this reason.

Arbitrary sharing of state in objects is very likely to lead to chaos
(Windows Vista Explorer crash)

Try to use a well-structured concurrent design pattern, like the
ones we are going to describe.

Thread Coordination

Data primitives to allow one thread to process data without
interference from others.

Include semaphores, mutexes, condition variables, monitors.

These are all low-level constructs and very error-prone.

Java, Objective-C and C# support a ―synchronized‖ block
wrapper.

Java synchronized

The following code snippet protects a segment of code from
access by more than one thread:

 synchronized(someObject) {

 val = val + 1;

 }

The first thread to execute this obtains a lock on the object
someObj.

Another thread trying this on the same object will block at the
synchronized statement until the first thread exits this block.

Synchronized methods

Public class myInc {

 int val;

 public synchronized void incr() {

 if (val < 10) val = val + 1;

 }

}

Locks on the class instance.

This is like wrapping synchronized(self) around the method.

Reentrancy

Public class myFact {

 public synchronized int fact(int n) {

 if (n == 0) return 1;

 else return n * fact(n-1);

 }

}

Locks on the class instance the first time. Reentrancy allows the
same thread to pass through the lock multiple times.

A count is kept of the levels of reentrance, so the lock releases
at the right time.

Thread-Safety

By synchronizing all the methods of a class, we can usually
achieve thread-safety.

You still need to watch out for:

• public instance variables

• Static variables (but you can lock on the class object)

And classes that use thread-safe classes still need more work.

Its surprisingly difficult to get it right. No need in most cases.
Thread-safe classes exist for many important data structures
(e.g. collections in Java).

Design Patterns

• Message queue

• GUI Thread / Worker thread pool

• Database / Model-View-Controller

• Actor

Message Queues

Two threads (or processes) with limited communication can use a
message queue.

This is a simple implementation which minimizes coordination and
data-sharing between the two threads.

 Thread 1

 …

 sendmsg(msg);

 …

 Thread 2

 while (1) {

 msg=getevent();

 process(msg);

 }

 Queue

Message Queues

Examples:

• The event queue in almost every GUI toolkit

• The ―Handler‖ queue for threads in Java

• .NET MessageQueue objects

• Thread-specific message queues in the Windows GUI API

• Java Message Service (JMS)

And similar primitives exist between processes:

• POSIX message queues (in Linux)

• CORBA asynchronous messaging

Message Queues

We can realize a message queue by synchronizing queue and
dequeue operations in a standard queue. i.e.

public Class myQueue<T> {

 Queue<T> Q;

public synchronized void enqueue(T v) {

 Q.enqueue(v);

}

public synchronized T dequeue() {

 return Q.dequeue();

}

Message Queues

Advantages:

• Code is basically sequential in each thread. Much easier to
develop and debug.

• Reusable queue libraries do all the hard work.

Disadvantages:

• Inefficient if too much communication, or if complex data
structures are passed.

• Need message loop/dispatcher on receiving end – not very
modular.

Runnables

A weakness with a simple message queue approach is that
behavior is very limited – the receiver only responds to
messages it already knows what to do with.

A much more powerful mechanism is to post Runnables:

public class X implements Runnable {

 int y, z;

 public X(int y0, int z0) {y = y0; z = z0;} // Save y, z on create

 public void run() {

 // do something useful, using y, z at some later time

 }

}

Runnables

Runnables are class instances (Objects), and can be pushed into a
queue like other messages.

When the message handler in the receiver dequeues a runnable, it
recognizes it by type, and calls its run() method.

In this way, the runnable (which is created in an originating
thread), gets executed in a different thread.

Futures

Sending a task (runnable) to a threadPool is different from
invoking a method in several ways:

• Arguments need to be saved as instance variables so they are
available when the run() method is called.

• Starting the task returns immediately.

• There can be no return value (the method wasn’t called yet).

Futures

But the method can return a Future, which is a handle on the
allocated thread. With a Future F you can:

• Cancel the task, i.e. stop it asynchronously: F.cancel()

• Query the Future to see if the task is done: F.isDone()

• Get the return value after the task is complete: F.get()

Futures - Cancelling

The cancelled thread should receive a InterruptedException (Note:
this may only happen in certain places, e.g. in Thread.sleep()).

The worker task should catch this exception (it has to), and then
do any cleanup before finishing. i.e.

Try {

 // Normal worker code here

} catch (InterruptedException e) {

 // Cleanup here

}

Design Patterns

• Message queue

• GUI Thread / Worker thread pool

• Database / Model-View-Controller

• Actor

GUI Thread + Worker ThreadPool

The GUI thread can only do one thing. A long operation
(e.g. file read/write) has to run in another thread. We
typically call those worker threads.

Creating/destroying threads is expensive, we don’t want to
do it with each task. So we establish a thread pool, which
is persistent and reusable.

Tasks (runnables) are assigned to threads by the pool
service. You don’t normally need to know what is
happening.

Example App

Simulates:

• File read and write

• Network connections

• A live help system

public class threadsDemo extends Activity {

 ExecutorService workers; // The threadPool

 Handler GUIhandler; // GUI thread’s message Q

 …

 @Override

 public void onCreate(Bundle savedInstanceState) {

 GUIhandler = new Handler();

 workers = Executors.newCachedThreadPool();

 …

void runReadBar () {

 // Simulates a file read. Gradually moves a progress bar

}

 @Override

 public void onCreate(Bundle savedInstanceState) {

 …

 // Define the onClick handler for the file read button

 start_button.setOnClickListener(new OnClickListener() {

 public void onClick(View v) { // Standard onClick preamble

 … // Callable is just like Runnable, but returns a Future

 readFuture = workers.submit(new Callable<String>() {

 public String call() {runReadBar(); return null;}

 });}

 }

 @Override

 public void onCreate(Bundle savedInstanceState) {

 … // This button cancels the running read task

 cancel_button.setOnClickListener(new OnClickListener() {

 public void onClick(View v) { // Standard onClick preamble

 if (!readFuture.isDone()) // Don’t cancel if its done

 if (readFuture.cancel(true)) { // see if cancel succeeded

 }

 }})

public class PBU implements Runnable { // Progress bar updater

 ProgressBar pb; int i; // Reference to a ProgressBar, new value

 public PBU(ProgressBar pb0, int i0) {pb=pb0; i=i0;}

 public void run() {pb.setProgress(i);} // Set the bar to its new val

}

public void runReadBar() // incrementally fills the PB, then clears

 double completed = 0.0; // Fraction of completion

 try {

 while (completed < 1.0) { // Post runnable to GUI to update

 GUIhandler.post(new PBU(pb1,(int)(completed*bmax)));

 Thread.sleep(100);

 completed += 0.003;

 }

 } catch (InterruptedException e) {}; // Tidy up (nothing to do)

}

Demo

Design Patterns

• Message queue

• GUI Thread / Worker thread pool

• Database / Model-View-Controller

• Actor

Model-View-Controller

MVC is an excellent pattern for concurrent programming:

State is centralized in the model, no other communication needed

Controllers+Viewers run independently, and each can have its own
thread.

Model

View

Controller

View

Controller

View

Controller

Model-View-Controller

Databases provide an excellent backend for the model:

Transactions – complex updates are atomic.

Locking at different scales: an entire table or a row of a table.

Consistency constraints (relations).

Publish-Subscribe

Triggers

Model

View

Controller

View

Controller

View

Controller

MVC for multithreading

Advantages:

• Extensible, modular.

• Easy to develop and debug.

• Save much coding if a database is used.

Disadvantages:

• Heavy use of resources (space, time, memory).

• Discourages quick information flows.

• Can be very slow with many users if locks are too coarse.

Actor

An actor is a class instance that runs its own thread.

Since data and methods are closely associated in a class, using a
single thread to ―run‖ the actor is very modular.

The actor will need an event loop to process incoming events.

Synchronized queues or
mailboxes support
communication.

 Actor 1

 while (1) {

 msg=getevent();

 process(msg);

 }

Actor

Advantages:

Easy to design – like the sequential version of the class, but with
the event loop added.

Good alignment between threads and data, minimizes contention
and probability of inconsistency.

Exploits multicore processors.

Disadvantages:

A system of actors can be very complex to model.

Best to use a mixture of actors and ―passive‖ classes.

A large multi-actor system is resource-intensive (memory, time,…)

Debugging

Not too difficult – similar to sequential debugging with a few extra
operations:

Attach: attach the debugger to a running process.

List threads: list the running threads in the program.

Select a thread: Pick one to view or step through.

Thread-specific breakpoints: Stop the program when one
specific thread reaches a program line.

Debugging

Note: The debugger normally runs all threads but checks when
certain conditions (breakpoints or steps) are met by a particular
thread.

So debugged execution is very similar to live execution, except for
the pauses.

Review

Design patterns for multithreaded programs:

• Message queue

• GUI thread/Worker threadPool

• MVC

• Actor

Debugging multithreaded programs

