Conceptual Models

CS160: User Interfaces
John Canny
Topics

From Sept. 8 reading:
• Affordances
• Conceptual Models
• Design Principles
• Metaphors

Today’s reading:
• Cognitive Conscious and Unconscious
• Modes
Affordances
“... the term affordance refers to the perceived and actual properties of the thing, primarily those fundamental properties that determine just how the thing could possibly be used.

Some affordances “obvious”
- Knobs afford turning
- Buttons afford pushing
- Glass can be seen through

Some affordances learned
- Glass breaks easily
- CDs have only one active side
- iPhone orientation flip

The Design of Everyday Things. 1988. Don Norman
Door Handles

Affordances suggest how to use the object
Door Handles

Affordances suggest how to use the object
Affordances
Clues about how object/interface works
Affordances

Clues about how object/interface works

Affordances

- holes for insertion of fingers
- blades for cutting

Implications clear for how operating parts work
Affordances

Clues about how object/interface works or doesn’t

Teapot

Screw
Dependencies

Affordances suggest how to use the object

Can be dependent on the
 – Experience
 – Knowledge
 – Culture
Cultural Dependencies

Affordances suggest how to use the object

Can be dependent on the
 - Experience
 - Knowledge
 - Culture
 • Switches (US down=off, UK down=on)
 • red = danger, green = go

Can make an action easy/difficult
Perceived Affordances

Affordances suggest how to use the object

Can be dependent on the
 – Experience
 – Knowledge
 – Culture of the actor

Can make an action easy/difficult

Affordances may be *perceived* without actually existing
Game controller affordances

Wii remote, roughly flashlight sized, easy to grip the right way.

Roughly the diameter of a tennis racket/ baseball bat/golf club

“Trigger” button underneath falls under the index finger.

Most-used buttons are thumb- or index-finger operated.
Game controller affordances

But the Wii remote also supports two-handed use.

In this position, the main select “A” button falls under the left hand. The right hand button replaces it.

Main select doesn’t work in older Nintendo games. This takes some getting used to…

![Wii Remote - Horizontal Position](image-url)
Screen-Based Interfaces

Physical affordances
- Screen, pointing device, physical buttons, keyboard
- These afford touching, pointing, looking, clicking on every pixel
Screen-Based Interfaces

Physical affordances
- Screen, pointing device, selection buttons, keyboard
- These afford touching, pointing, looking, clicking on every pixel

Physical affordances of screens often unused
- Screen affords touching, but many screens are not touch sensitive
Designer Controls Perceived Affordances

What are the affordances of these graphical objects?
Do Graphical Objects Afford Clicking?

- Graphical design emphasizes affordances
- Does user recognize object as a button to be clicked?
Widget Affordances

Well-designed widgets have clear affordances

e.g. resize handles:

crop handles:

motion arrows
Conceptual Models
Mental Representations

Users’ understanding of how interface works

People have preconceived models
 – Infix vs. postfix calculators
 – Delete file by dragging into trash can

Changing mental models can be difficult
Interfaces Must Communicate Model

Online help / documentation useful (but shouldn’t be necessary)
Refrigerator

Problem: freezer too cold, but fresh food just right
Refrigerator Controls

Normal Settings: C and 4
Colder Fresh Food: C and 5-6
Coldest Fresh Food: B and 7
Colder Freezer: D and 6-7
Warmer Fresh Food: C and 3-1
OFF (both): 0

What is your conceptual model?
Most Likely Conceptual Model

Independent Controls
Correct Conceptual Model

Possible solutions:

- Make controls map to user’s model *
- Make controls map to actual system
Conceptual Models

- Designers model may not match user’s model
- Users get model from experience & usage
 - Users only work with system image, not with designer
- What if the two models don’t match?
Mismatches between models

• Errors
• Slow
• Frustration
• ...

Preconceived Models

People have preconceived models of how things work:
 – how does your car start?
 – how does an ATM machine work?
 – how does your computer boot?

Allows us to predict how things will work or not work

Based on slide by Saul Greenberg
Preconceived Models

People have preconceived models of how things work:

– how does your car start?
– how does an ATM machine work?
– how does your computer boot?

Allows us to predict how things will work

Based on slide by Saul Greenberg
Preconceived Models Often Wrong!

Extracted from fragmentary evidence
- Turn thermostat up above final setting to heat room up faster.

People find ways to explain things
- Computer terminal breaks when accessing the library catalog
- Certain you’re driving on the correct road
Design Principles
1. Make Controls Visible
Poor Visibility (BMW’s iDrive)

Don Norman’s critique is here.
Poor Visibility (BMW’s iDrive)

Single control to access 700 parameters.

Large display shows choices
• Full visual attention required
• Heavy use of abbreviations:
 • “DSC/DTC” “BC” etc

• Mapping inconsistent, sometimes turn left to move right.
How do you put someone on hold?
How do you set the alarm?
Too Much Visibility?

6 remote controls for “modest” home theater
2. Make Sure Mapping is Clear

Mapping: Relationship between controls and their result

Mercedes Seat Adjustment
Front-back audio balance
Does it control moving sound left/right or front/back?
Stovetop Controls

arbitrary

24 possibilities, requires:
- visible labels
- memory

paired

2 possibilities per side
=4 total possibilities

full mapping
Transfer Effects

People transfer expectations from known objects to similar new ones

– Positive: previous experience applies to new situation
– Negative: previous experience conflicts with new situation
3. Provide Feedback

People press >> 1 time
- Unclear if system has registered the button press
Elevator buttons light up → reducing multiple presses
Poor Feedback

Took a day for refrigerator to adjust to new settings
Direct Manipulation

Use one-to-one “identity” mappings. Hand action = object action

First demonstrated in Sutherland’s Sketchpad

Literal DM is hard to do without a pen interface, in fact tangible interfaces the only real examples

But interfaces can be DM from the mouse pointer onward – the mouse interface doesn’t require any more learning.
Direct Manipulation

Topobo
Direct Manipulation

The touch screen
Direct Manipulation

Wii controllers
Direct Manipulation

Video
Metaphor

Definition
The transference of the relation between one set of objects to another set for the purpose of brief explanation

Lakoff & Johnson
- “...the way we think, what we experience, and what we do every day is very much a matter of metaphor.”
- in our language & thinking - “argument is war”
 • ...he attacked every weak point
 ...criticisms right on target
 ...if you use that strategy

Metaphors can highlight some features, suppress others
- There is some systematicity to the transference
Interface Metaphors

Purpose
- Function as natural models
- Leverages knowledge of familiar, concrete objects/experiences
- Transfer this knowledge to abstract tasks and concepts

Problem
- Inaccurate or naive conceptual model of the system

A presentation tool is like a slide projector
The Painting Metaphor
The Desktop Metaphor

Started at Xerox PARC
- Xerox Star
- Bitmapped screens made it possible
- Windows, Folders
- Document actions: open, edit,…

Not meant to be a real desktop
- Idea is to organize information in a way to allow people to use it in the way they use information on their desktops
- Allow windows to overlap – make the screen act as if there were objects on it
Mobile Metaphors?
Rubber Sheet
Flick scroll – Heavy sheet
Cognition

Jef Raskin
Cognitive Engineering

• Ergonomics:
 – Accounts for statistical variation of human variability
 • Design a car seat that fits 95% of the population
 – Says that designing products that interact with us physically is reasonable straightforward

• Cognetics: Ergonomics of the mind
 – Study of the “engineering scope of our mental abilities”
 – This is the applied side of cognitive science
Cognitive Conscious / Unconscious

• Examples?
 – What is the last letter in your first name?
 • You know it but weren’t consciously accessing this information a moment ago, but now you are.
 – How do your shoes feel right now?
 – How did “The Shining” make you feel?
 – Having a name on the “tip of your tongue”
Locus of Attention

• What is it?
 – An idea/object/event about which you are intently and actively thinking
 – The one entity on which you are currently concentrating
 • You see and hear much more
 • E.g., background noise

• Why locus?
 – Focus implies volition; locus not always consciously control
 – Attention can be either active or “going with the flow”
Locus of Attention

Why is it important for HCI?
- Cannot be conscious of more than one task at a time
- Make the task the locus of attention
- Beware of the power of mental habits
 - Repetitive confirmations don’t work
- Take advantage of it
 - Do pre-loading while user thinking about next step
 - Streamline resumption of interrupted tasks
Modes
Modes: Definition

What are they?
Modes: Definition

• What are they?
 – The same user actions have different effects in different situations.
Modes: Definition

• What are they?
 – The same user actions have different effects in different situations.
 – Examples?
 • Keycaps lock
Modes: Definition

• What are they?
 – The same user actions have different effects in different situations.
 – Examples?
 • Keycaps lock
Search Interface Desiderata

How does one build an interface that successfully supports both direct search and browsing? The press is rife with accounts of failed searches and unhappy users. For example, a recent report by Forrester Research found that while 76% of firms rated search as "extremely important" only 24% consider their Web site's search to be "extremely useful" [6].

In our view, the way to do things correctly is to use the evidence found in the results of usability studies of search systems. Unfortunately, most studies of search behavior are inconclusive about how to improve the system (for example, [12]), but some consistencies do emerge about what works. Here, we summarize which search features tend to work well, and which fail, in practice. Throughout this article, the assumption is that the user population for a browsing task, and a direct search interface when they knew precisely what they wanted.

Features found to work well across studies are color highlighting of search terms in result listings (also known as "keywords-in-context"); sorting of search results along criteria such as date and author; and grouping search results according to well-organized category labels [5].

Certain features are helpful in principle, but only work in practice if the underlying algorithms are highly accurate and if the interface is carefully designed. Some examples of such features include spelling correction, automated term expansion, and simple relevance feedback (also known as "more like this"), in which the user selects one item and the system shows items that are similar in scope along several dimensions.
use the evidence found in the results of usability studies of search systems. Unfortunately, most studies of search behavior are inconclusive about how to improve the system (for example, [12]), but some consistencies do emerge about what works. Here, we summarize which search features tend to work well, and which fail, in practice. Throughout this article, the assumption is that the user population works in practice if the underlying algorithms are highly accurate and if the interface is carefully designed. Some examples of such features include spelling correction, automated term expansion, and simple relevance feedback (also known as “more like this”), in which the user selects one item and the system shows items that are similar in scope along several dimensions.
Using Modes in Interfaces

• When are they useful?
 – Temporarily restrict users’ actions
 – When logical and clearly visible and easily switchable
 • Drawing with paintbrush vs. pencil
 • Autocorrect (if easy to switch the mode)

• Why can they be problematic?
 – Big memory burden
 – Source of many serious errors

• How can these problems be fixed?
 – Don’t use modes – redesign system to be modeless
 – Redundantly visible
Redesigning to Avoid Modes

- Setting the time on a clock
Redesigning to Avoid Modes

Setting the time on a clock

Modeless
Modes are Sometimes Good

- Fill and empty syringe

Modeless
Modes are Sometimes Good

- If task requires modes, interface may also contain modes

Fill Mode
- Fill Syringe
 - Vol: 50, 100, 150, 200
 - Fill
 - Current Vol: 25ml
 - Max Vol: 200ml

Deliver Mode
- Deliver Solution
 - Vol: 50, 100, 150, 200
 - Rate: 10, 20, 30, 40
 - Current Vol: 25ml
Quasimodes

• Set and hold a mode via conscious, continuous action
 – Shift key to capitalize (vs. Caps Lock)
 – Foot pedal that must remain pressed
 – Pull down menus
 – Muscle tension reminds users they are holding a mode

• Also known as “spring-loaded modes”
Noun-Verb VS Verb-Noun

• Noun-Verb: Select object, then do action
 – Emphasizes 'nouns' (visible objects) rather than 'verbs' (actions)

• Advantages
 – Closer to real world
 – Modeless interaction
 – Actions always within context of object
 • inappropriate ones can be hidden
 – Generic commands
 • the same type of action can be performed on the object
 • e.g. drag ‘n drop:

[Diagram: move from 'my.doc' to a new location]
Bob’s “Living Room” Metaphor
Apple’s Cyberdog
Metaphor Caveats

Too limited
– The metaphor restricts interface possibilities

Too powerful
– The metaphor implies the system can do things it can’t

Too literal or cute
– Makes it difficult to understand abstract concept

Mismatched
– The metaphor conveys the wrong meaning
Summary

• Affordances
• Conceptual Models
• Design Principles
• Metaphors

• Cognitive Conscious and Unconscious
• Modes