
Multithreading II

CS160: User Interfaces

John Canny

.

This time

More on multithreaded programs

Debugging multithreaded programs

More examples

Threads - review
A thread is a partial virtual machine. Each thread has its own

stack (and local variables), but shares its heap space and with
other threads.

 for (i=0; i<n; i++) {

 tmp = A[i];

 A[i] = B[i];

 B[i] = tmp;

 }

* Threads may also have some private heap space, called
Thread-Local Storage (TLS).

VM1 VM2

Thread Safety

Code is thread safe if it can be called from multiple threads
without “breaking” the program.

int fact (int n) {

 int i, p;

 for (i=1,p=1; i<=n; i++)
 p*=i;

 return p;

 }

Separate ints i,p are created on the stack each time the function
is called. Each thread has its own copy.

Java synchronized

The following code snippet protects a segment of code from
access by more than one thread:

 synchronized(someObject) {

 val = val + 1;

 }

The first thread to execute this obtains a lock on the object
someObj.

Another thread to run any code locked by this same object will
block at the synchronized statement until the first thread exits
its block.

Concepts

• Message Queues – java “Handler”s

• Runnables and Callables

• Thread Pools

• Futures

Java Handler()

High-level interface to a MessageQueue

Two ways to use it:

• Send an android.os.Message() to it with
Handler.sendMessage()

override Handler.handleMessage() to take action.

• Send a Runnable or Callable object to the Handler.

Runnables

Simple message queues have limited functions – the receiver only
responds to messages it already knows what to do with.

A much more powerful mechanism is to post Runnables to a
message queue (Handler):

public class X implements Runnable {

 int y, z;

 public X(int y0, int z0) {y = y0; z = z0;} // Save y, z on create

 public void run() {

 // do something useful, using y, z at some later time

 }

}

Runnables

Runnables are class instances (Objects), and can be pushed into a
queue like other messages.

When the message handler in the receiver dequeues a runnable, it
recognizes it by type, and calls its run() method.

In this way, the runnable (which is created in an originating
thread), gets executed in a different thread.

Callables

Very similar to Runnables, but return a value. E.g.

public Double Hanoi(int n) {

 return Hanoi(n-1) + 1.0 + Hanoi(n-1);

}

C = new Callable<Double>({

 public Double call() {return Hanoi(10);}

 });

Futures

Callables can return a Future, which is a handle on the allocated
thread. With a Future F you can:

• Cancel the task, i.e. stop it asynchronously: F.cancel()

• Query the Future to see if the task is done: F.isDone()

• Get the return value after the task is complete: F.get()

GUI Thread + Worker ThreadPool

The GUI thread can only do one thing. A long operation
(e.g. file read/write) has to run in another thread. We
typically call those worker threads.

Creating/destroying threads is expensive, we don’t want to
do it with each task. So we establish a thread pool, which
is persistent and reusable.

Tasks (runnables and callables) are assigned to threads by
the pool service. You don’t normally need to know what is
happening.

Futures

Sending a task (runnable) to a threadPool is different from
invoking a method in several ways:

• Arguments need to be saved as instance variables so they are
available when the run() method is called.

• Starting the task returns immediately.

• There can be no return value (the method wasn’t called yet).

The Future provides a link to this running task, and allows the
holder to check completion, get the result when its finished, or
cancel it.

Callables - Arguments

public Double Hanoi(int n) {

 if (n == 1) return 1.0;

 else return Hanoi(n-1) + 1.0 + Hanoi(n-1);

}

Class runHanoi extends Callable<Double> {

 int n; // Extend callable so instance variables can hold args

 public runHanoi(int n0) {n = n0;}

 public Double call() {return Hanoi(n);}

}

Callables and Futures

C = new runHanoi(10); // Save args

Future<Double> F = workers.submit(C); // put in the queue

// wait in main thread

while (!F.isDone()) {}

Double val = F.get();

Futures - Cancelling

The cancelled thread should receive a InterruptedException (Note:
this may only happen in certain places, e.g. in Thread.sleep()).

The worker task should catch this exception (it has to), and then
do any cleanup before finishing. i.e.

Try {

 // Normal worker code here

} catch (InterruptedException e) {

 // Cleanup here

}

Example App

Simulates:

• Long computation

• Passing in an argument and getting a result back

Runnables vs. RMI

Runnables look something like Java RMI (Remote
Method Invocation). But there are big differences:

No serialization for runnables

Runnables and efficiency

Invoking runnable() methods should be no less efficient
than invoking any other method on an object.

We used new to create new runnables and callables in
the example code, but this was just for simplicity.

Its fine to allocate one runnable to implement a
particular type of action, then modify its arguments
each time it is posted.

Design Patterns

• Message queue

• GUI Thread / Worker thread pool

• Database / Model-View-Controller

• Actor

Example App

Simulates:

• File read and write

• Network connections

• A live help system

public class threadsDemo extends Activity {

 ExecutorService workers; // The threadPool

 Handler GUIhandler; // GUI thread’s message Q

 …

 @Override

 public void onCreate(Bundle savedInstanceState) {

 GUIhandler = new Handler();

 workers = Executors.newCachedThreadPool();

 …

void runReadBar () {

 // Simulates a file read. Gradually moves a progress bar

}

 @Override

 public void onCreate(Bundle savedInstanceState) {

 …

 // Define the onClick handler for the file read button

 start_button.setOnClickListener(new OnClickListener() {

 public void onClick(View v) { // Standard onClick preamble

 … // Callable is just like Runnable, but returns a Future

 readFuture = workers.submit(new Callable<String>() {

 public String call() {runReadBar(); return null;}

 });}

 }

 @Override

 public void onCreate(Bundle savedInstanceState) {

 … // This button cancels the running read task

 cancel_button.setOnClickListener(new OnClickListener() {

 public void onClick(View v) { // Standard onClick preamble

 if (!readFuture.isDone()) // Don’t cancel if its done

 if (readFuture.cancel(true)) { // see if cancel succeeded

 }

 }})

public class PBU implements Runnable { // Progress bar updater

 ProgressBar pb; int i; // Reference to a ProgressBar, new value

 public PBU(ProgressBar pb0, int i0) {pb=pb0; i=i0;}

 public void run() {pb.setProgress(i);} // Set the bar to its new val

}

public void runReadBar() // incrementally fills the PB, then clears

 double completed = 0.0; // Fraction of completion

 try {

 while (completed < 1.0) { // Post runnable to GUI to update

 GUIhandler.post(new PBU(pb1,(int)(completed*bmax)));

 Thread.sleep(100);

 completed += 0.003;

 }

 } catch (InterruptedException e) {}; // Tidy up (nothing to do)

}

Demo

Design Patterns

• Message queue

• GUI Thread / Worker thread pool

• Database / Model-View-Controller

• Actor

Model-View-Controller

MVC is an excellent pattern for concurrent programming:

State is centralized in the model, no other communication needed

Controllers+Viewers run independently, and each can have its own
thread.

Model

View

Controller

View

Controller

View

Controller

Model-View-Controller

Databases provide an excellent backend for the model:

Transactions – complex updates are atomic.

Locking at different scales: an entire table or a row of a table.

Consistency constraints (relations).

Publish-Subscribe

Triggers

Model

View

Controller

View

Controller

View

Controller

MVC for multithreading

Advantages:

• Extensible, modular.

• Easy to develop and debug.

• Save much coding if a database is used.

Disadvantages:

• Heavy use of resources (space, time, memory).

• Discourages quick information flows.

• Can be very slow with many users if locks are too coarse.

Example

Actor

An actor is a class instance that runs its own thread.

Since data and methods are closely associated in a class, using a
single thread to “run” the actor is very modular.

The actor will need an event loop to process incoming events.

Synchronized queues or
mailboxes support
communication.

 Actor 1

 while (1) {

 msg=getevent();

 process(msg);

 }

Actor

Advantages:

Easy to design – like the sequential version of the class, but with
the event loop added.

Good alignment between threads and data, minimizes contention
and probability of inconsistency.

Exploits multicore processors.

Disadvantages:

A system of actors can be very complex to model.

Best to use a mixture of actors and “passive” classes.

A large multi-actor system is resource-intensive (memory, time,…)

Debugging

Not too difficult – similar to sequential debugging with a few extra
operations:

Attach: attach the debugger to a running process.

List threads: list the running threads in the program.

Select a thread: Pick one to view or step through.

Thread-specific breakpoints: Stop the program when one
specific thread reaches a program line.

Debugging

Note: The debugger normally runs all threads but checks when
certain conditions (breakpoints or steps) are met by a particular
thread.

So debugged execution is very similar to live execution, except for
the pauses.

Review

Design patterns for multithreaded programs:

• Message queue

• GUI thread/Worker threadPool

• MVC

• Actor

Debugging multithreaded programs

